35
Views
106
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Involvement of Nucleotide Excision Repair in a Recombination-Independent and Error-Prone Pathway of DNA Interstrand Cross-Link Repair

, , , , &
Pages 713-720 | Received 24 Jul 2000, Accepted 26 Oct 2000, Published online: 27 Mar 2023

REFERENCES

  • Adair, G. M., R. L. Rolig, D. Moore-Faver, M. Zabelshansky, W. H. Wilson, and R. S. Nairn. 2000. Role of ERCC1 in removal of long non-homologous tail during targeted homologous recombination. EMBO J. 19:5552–5561.
  • Andersson, B. S., T. Sadeghi, M. J. Sicilano, R. J. Legerski, and D. Murray. 1996. Nucleotide excision repair genes as determinants of cellular sensitivity to cyclophosamide analogs. Cancer Chemother. Pharmacol. 38:406–416.
  • Araujo, S. J., F. Tirode, F. Coin, H. Pospiech, J. E. Syvaoja, M. Stucki, U. Hubscher, J. M. Egly, and R. D. Wood. 2000. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev. 14:349–359.
  • Berardini, M., P. L. Foster, and E. L. Loechler. 1999. DNA polymerase II (polB) is involved in a new DNA repair pathway for DNA interstrand cross-links Escherichia coli. J. Bacteriol. 181:2878–2882.
  • Berardini, M., W. Mackay, and E. L. Loechler. 1997. Evidence for a recombination-independent pathway for the repair of DNA interstrand cross-links based on a site-specific study with nitrogen mustard. Biochemistry 36:3506–3513.
  • Bessho, T., D. Mu, and A. Sancar. 1997. Initiation of DNA interstrand cross-link repair in humans: the nucleotide excision repair system makes dual incisions 5′ to the cross-linked base and removes a 22- to 28-nucleotide-long damage-free strand. Mol. Cell. Biol. 17:6822–6830.
  • Bodell, W. J.. 1990. Molecular dosimetry for sister-chromatid exchange induction and cytotoxicity by monofunctional and bifunctional alkylating agents. Mutat. Res. 233:203–210.
  • Bredberg, A., Z. Sandor, and M. Brant. 1995. Mutational response of Fanconi anaemia cells to shuttle vector site-specific psoralen cross-links. Carcinogenesis 16:555–561.
  • Cassier-Chauvat, C., and E. Moustacchi. 1988. Allelism between pso1–1 and rev3–1 mutants and between pso2–1 and snm1 mutants in Saccharomyces cerevisiae. Curr. Genet. 13:37–40.
  • Cheng, S., B. Van Houten, H. B. Gamper, A. Sancar, and J. E. Hearst. 1988. Use of psoralen-modified oligonucleotides to trap three-stranded RecA-DNA complexes and repair of these cross-linked complexes by ABC excinuclease. J. Biol. Chem. 263:15110–15117.
  • Cole, R., S. D. Levitan, and R. R. Sinden. 1976. Removal of psoralen interstrand crosslinks from DNA of Escherichia coli: mechanism and genetic control. J. Mol. Biol. 103:39–59.
  • Cole, R. S.. 1973. Repair of DNA containing interstrand crosslinks in Escherichia coli: sequential excision and recombination. Proc. Natl. Acad. Sci. USA 70:1064–1068.
  • de Laat, W. L., N. G. Jaspers, and J. H. Hoeijmakers. 1999. Molecular mechanism of nucleotide excision repair. Genes Dev. 13:768–785.
  • Dronkert, M. L., H. B. Beverloo, R. D. Johnson, J. H. Hoeijmakers, M. Jasin, and R. Kanaar. 2000. Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Mol. Cell. Biol. 20:3147–3156.
  • Faruqi, A. F., H. J. Datta, D. Carroll, M. M. Seidman, and P. M. Glazer. 2000. Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol. Cell. Biol. 20:990–1000.
  • Faruqi, A. F., M. M. Seidman, D. J. Segal, D. Carroll, and P. M. Glazer. 1996. Recombination induced by triple-helix-targeted DNA damage in mammalian cells. Mol. Cell. Biol. 16:6820–6828.
  • Fuller, L. F., and R. B. Painter. 1988. A Chinese hamster ovary cell line hypersensitive to ionizing radiation and deficient in repair replication. Mutat. Res. 193:109–121.
  • Gurzadyan, G. G., H. Gorner, and D. Schulte-Frohlinde. 1995. Ultraviolet (193, 216 and 254 nm) photoinactivation of Escherichia coli strains with different repair deficiencies. Radiat. Res. 141:244–251.
  • Henriques, J. A., and E. Moustacchi. 1980. Isolation and characterization of pso mutants sensitive to photo-addition of psoralen derivatives in Saccharomyces cerevisiae. Genetics 95:273–288.
  • Hoy, C. A., L. H. Thompson, C. L. Mooney, and E. P. Salazar. 1985. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents. Cancer Res. 45:1737–1743.
  • Jachymczyk, W. J., R. C. Von Borstel, M. R. A. Mowat, and P. J. Hastings. 1981. Repair of interstrand cross-links in DNA of Saccharomyces cerevisiae requires two systems of DNA repair: the RAD3 system and the RAD51 system. Mol. Gen. Genet. 182:196–205.
  • Jeggo, P. A.. 1998. Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Radiat. Res. 150:S80–S91.
  • Johnson, R. D., N. Liu, and M. Jasin. 1999. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature 401:397–399.
  • Jones, N. J., R. Cox, and J. Thacker. 1987. Isolation and cross-sensitivity of X-ray-sensitive mutants of V79–4 hamster cells. Mutat. Res. 183:279–286.
  • Kano, Y., and Y. Fujiwara. 1981. Roles of DNA interstrand crosslinking and its repair in the induction of sister-chromatid exchange and a higher induction in Fanconi's anemia cells. Mutat. Res. 81:365–375.
  • Li, L., C. A. Peterson, X. Lu, P. Wei, and R. J. Legerski. 1999. Interstrand cross-links induce DNA synthesis in damaged and undamaged plasmids in mammalian cell extracts. Mol. Cell. Biol. 19:5619–5630.
  • Liu, N., J. E. Lamerdin, R. S. Tebbs, D. Schild, J. D. Tucker, M. R. Shen, K. W. Brookman, M. J. Siciliano, C. A. Walter, W. Fan, L. S. Narayana, Z. Q. Zhou, A. W. Adamson, K. J. Sorensen, D. J. Chen, N. J. Jones, and L. H. Thompson. 1998. XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol. Cell 1:783–793.
  • McHugh, P. J., W. R. Sones, and J. A. Hartley. 2000. Repair of intermediate structures produced at DNA interstrand cross-links in Saccharomyces cerevisiae. Mol. Cell. Biol. 20:3425–3433.
  • Miller, R. D., L. Prakash, and S. Prakash. 1982. Genetical control of excision of Saccharomyces cerevisiae interstrand DNA cross-links induced by psoralen plus near-UV light. Mol. Cell. Biol. 2:939–948.
  • Morrison, A., R. B. Christensen, J. Alley, A. K. Beck, E. G. Bernstine, J. F. Lemontt, and C. W. Lawrence. 1989. REV3, a Saccharomyces cerevisiae gene whose function is required for induced mutagenesis, is predicted to encode a nonessential DNA polymerase. J. Bacteriol. 171:5659–5667.
  • Mu, D., T. Bessho, L. V. Nechev, D. J. Chen, T. M. Harris, J. E. Hearst, and A. Sancar. 2000. DNA interstrand cross-links induce futile repair synthesis in mammalian cell extracts. Mol. Cell. Biol. 20:2446–2454.
  • Mu, D., and A. Sancar. 1997. Model for XPC-independent transcription-coupled repair of pyrimidine dimers in humans. J. Biol. Chem. 272:7570–7573.
  • Nelson, J. R., D. W. Lawrence, and D. C. Hinkle. 1996. Thymidine-thymine dimer bypass by yeast DNA polymerase zeta. Science 272:1646–1649.
  • Pierce, A. J., R. D. Johnson, L. H. Thompson, and M. Jasin. 1999. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 13:2633–2638.
  • Raha, M., G. Wang, M. M. Seidman, and P. M. Glazer. 1996. Mutagenesis by third-strand-directed psoralen adducts in repair-deficient human cells: high frequency and altered spectrum in a xeroderma pigmentosum variant. Proc. Natl. Acad. Sci. USA 93:2941–2946.
  • Simon, J. A., P. Szankasi, D. K. Nguyen, C. Ludlow, H. M. Dunstan, C. J. Roberts, E. L. Jensen, L. H. Hartwell, and S. H. Friend. 2000. Differential toxicities of anticancer agents among DNA repair and checkpoint mutants of Saccharomyces cerevisiae. Cancer Res. 60:328–333.
  • Sladek, F. M., M. M. Munn, W. D. Rupp, and P. Howard-Flanders. 1989. In vitro repair of psoralen-DNA cross-links by RecA, UvrABC, and the 5′-exonuclease of DNA polymerase I. J. Biol. Chem. 264:6755–6765.
  • Theicher, B. A.. 1997. Antitumor alkylating agents, 5th ed. 1, Lippincott-Raven, New York, N.Y
  • Thompson, L. H.. 1996. Evidence that mammalian cells possess homologous recombinational repair pathways. Mutat. Res. 363:77–88.
  • van Hoffen, A., J. Venema, R. Meschini, A. A. van Zeeland, and L. H. Mullenders. 1995. Transcription-coupled repair removes both cyclobutane pyrimidine dimers and 6-4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts. EMBO J. 14:360–367.
  • Van Houten, B., H. Gamper, S. R. Holbrook, J. E. Hearst, and A. Sancar. 1986. Action mechanism of ABC excision nuclease on a DNA substrate containing a psoralen crosslink at a defined position. Proc. Natl. Acad. Sci. USA 83:8077–8081.
  • Wood, R. D.. 1997. Nucleotide excision repair in mammalian cells. J. Biol. Chem. 272:23465–23468.
  • Woodgate, R.. 1999. A plethora of lesion-replicating DNA polymerases. Genes Dev. 13:2191–2195.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.