28
Views
60
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Sequence-Specific Transcriptional Repression by KS1, a Multiple-Zinc-Finger–Krüppel-Associated Box Protein

&
Pages 928-939 | Received 27 Jul 2000, Accepted 20 Oct 2000, Published online: 27 Mar 2023

REFERENCES

  • Bellefroid, E. J., P. J. Lecocq, A. Benhida, D. A. Poncelet, A. Belayew, and J. A. Martial. 1989. The human genome contains hundreds of genes coding for finger proteins of the Krüppel type. DNA 8:377–387.
  • Bellefroid, E. J., D. A. Poncelet, P. J. Lecocq, O. Revelant, and J. A. Martial. 1991. The evolutionarily conserved Krüppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc. Natl. Acad. Sci. USA 88:3608–3612.
  • Blackwell, T. K., and H. Weintraub. 1990. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250:1104–1110.
  • Cook, T., B. Gebelein, K. Mesa, A. Mladek, and R. Urrutia. 1998. Molecular cloning and characterization of TIEG2 reveals a new subfamily of transforming growth factor-beta-inducible Sp1-like zinc finger-encoding genes involved in the regulation of cell growth. J. Biol. Chem. 273:25929–25936.
  • Cook, T., B. Gebelein, and R. Urrutia. 1999. Sp1 and its likes: biochemical and functional predictions for a growing family of zinc finger transcription factors. Ann. N. Y. Acad. Sci. 880:94–102.
  • Crossley, P. H., and P. F. Little. 1991. A cluster of related zinc finger protein genes is deleted in the mouse embryonic lethal mutation tw18. Proc. Natl. Acad. Sci. USA 88:7923–7927.
  • Dennig, J., M. Beato, and G. Suske. 1996. An inhibitor domain in Sp3 regulates its glutamine-rich activation domains. EMBO J. 15:5659–5667.
  • Desjarlais, J. R., and J. M. Berg. 1992. Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc. Natl. Acad. Sci. USA 89:7345–7349.
  • Elser, B., W. Kriz, J. V. Bonventre, C. Englert, and R. Witzgall. 1997. The Krüppel-associated box (KRAB)-zinc finger protein Kid-1 and the Wilms' tumor protein WT1, two transcriptional repressor proteins, bind to heteroduplex DNA. J. Biol. Chem. 272:27908–27912.
  • Fairall, L., S. D. Harrison, A. A. Travers, and D. Rhodes. 1992. Sequence-specific DNA binding by a two zinc-finger peptide from the Drosophila melanogaster Tramtrack protein. J. Mol. Biol. 226:349–366.
  • Fairall, L., J. W. Schwabe, L. Chapman, J. T. Finch, and D. Rhodes. 1993. The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. Nature 366:483–487.
  • Friedman, J. R., W. J. Fredericks, D. E. Jensen, D. W. Speicher, X. P. Huang, E. G. Neilson, and F. J. Rauscher III.. 1996. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 10:2067–2078.
  • Gebelein, B., M. Fernandez-Zapico, M. Imoto, and R. Urrutia. 1998. KRAB-independent suppression of neoplastic cell growth by the novel zinc finger transcription factor KS1. J. Clin. Investig. 102:1911–1919.
  • Grondin, B., M. Bazinet, and M. Aubry. 1996. The KRAB zinc finger gene ZNF74 encodes an RNA-binding protein tightly associated with the nuclear matrix. J. Biol. Chem. 271:15458–15467.
  • Grondin, B., F. Cote, M. Bazinet, M. Vincent, and M. Aubry. 1997. Direct interaction of the KRAB/Cys2-His2 zinc finger protein ZNF74 with a hyperphosphorylated form of the RNA polymerase II largest subunit. J. Biol. Chem. 272:27877–27885.
  • Harding, H. P., G. B. Atkins, A. B. Jaffe, W. J. Seo, and M. A. Lazar. 1997. Transcriptional activation and repression by ROR-alpha, an orphan nuclear receptor required for cerebellar development. Mol. Endocrinol. 11:1737–1746.
  • Huang, Z., B. Philippin, E. O'Leary, J. V. Bonventre, W. Kriz, and R. Witzgall. 1999. Expression of the transcriptional repressor protein Kid-1 leads to the disintegration of the nucleolus. J. Biol. Chem. 274:7640–7648.
  • Kim, S. S., Y. M. Chen, E. O'Leary, R. Witzgall, M. Vidal, and J. V. Bonventre. 1996. A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins. Proc. Natl. Acad. Sci. USA 93:15299–15304.
  • Klug, A., and J. W. Schwabe. 1995. Protein motifs. 5. Zinc fingers. FASEB J. 9:597–604.
  • Margolin, J. F., J. R. Friedman, W. K. Meyer, H. Vissing, H. J. Thiesen, and F. J. Rauscher III.. 1994. Krüppel-associated boxes are potent transcriptional repression domains. Proc. Natl. Acad. Sci. USA 91:4509–4513.
  • Moosmann, P., O. Georgiev, B. Le Douarin, J. P. Bourquin, and W. Schaffner. 1996. Transcriptional repression by RING finger protein TIF1 beta that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res. 24:4859–4867.
  • Moosmann, P., O. Georgiev, H. J. Thiesen, M. Hagmann, and W. Schaffner. 1997. Silencing of RNA polymerases II and III-dependent transcription by the KRAB protein domain of KOX1, a Krüppel-type zinc finger factor. Biol. Chem. 378:669–677.
  • Pavletich, N. P., and C. O. Pabo. 1993. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 261:1701–1707.
  • Pavletich, N. P., and C. O. Pabo. 1991. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252:809–817.
  • Peng, H., G. E. Begg, S. L. Harper, J. R. Friedman, D. W. Speicher, and F. J. Rauscher. 2000. Biochemical analysis of the Kruppel-associated box (KRAB) transcriptional repression domain. J. Biol. Chem. 275:18000–18010.
  • Pengue, G., V. Calabro, P. C. Bartoli, A. Pagliuca, and L. Lania. 1994. Repression of transcriptional activity at a distance by the evolutionarily conserved KRAB domain present in a subfamily of zinc finger proteins. Nucleic Acids Res. 22:2908–2914.
  • Philipsen, S., and G. Suske. 1999. A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res. 27:2991–3000.
  • Poncelet, D. A., E. J. Bellefroid, P. V. Bastiaens, M. A. Demoitie, J. C. Marine, H. Pendeville, Y. Alami, N. Devos, P. Lecocq, T. Ogawa, M. Muller, and J. A. Martial. 1998. Functional analysis of ZNF85 KRAB zinc finger protein, a member of the highly homologous ZNF91 family. DNA Cell Biol. 17:931–943.
  • Quandt, K., K. Frech, H. Karas, E. Wingender, and T. Werner. 1995. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23:4878–4884.
  • Ryan, R. F., D. C. Schultz, K. Ayyanathan, P. B. Singh, J. R. Friedman, W. J. Fredericks, and F. J. Rauscher III.. 1999. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Krüppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol. Cell. Biol. 19:4366–4378.
  • Segal, D. J., B. Dreier, R. R. Beerli, and C. F. Barbas III.. 1999. Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96:2758–2763.
  • Turner, J., and M. Crossley. 1999. Mammalian Krüppel-like transcription factors: more than just a pretty finger. Trends Biochem. Sci. 24:236–240.
  • Witzgall, R., E. O'Leary, A. Leaf, D. Onaldi, and J. V. Bonventre. 1994. The Krüppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression. Proc. Natl. Acad. Sci. USA 91:4514–4518.
  • Witzgall, R., R. Volk, R. S. Yeung, and J. V. Bonventre. 1994. Genomic structure and chromosomal location of the rat gene encoding the zinc finger transcription factor Kid-1. Genomics 20:203–209.
  • Wolfe, S. A., H. A. Greisman, E. I. Ramm, and C. O. Pabo. 1999. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J. Mol. Biol. 285:1917–1934.
  • Yet, S. F., M. M. McA'Nulty, S. C. Folta, H. W. Yen, M. Yoshizumi, C. M. Hsieh, M. D. Layne, M. T. Chin, H. Wang, M. A. Perrella, M. K. Jain, and M. E. Lee. 1998. Human EZF, a Krüppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains. J. Biol. Chem. 273:1026–1031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.