32
Views
112
CrossRef citations to date
0
Altmetric
Gene Expression

Shared Pathways of IκB Kinase-Induced SCFβTrCP-Mediated Ubiquitination and Degradation for the NF-κB Precursor p105 and IκBα

, , &
Pages 1024-1035 | Received 02 Aug 2000, Accepted 15 Nov 2000, Published online: 28 Mar 2023

RERERENCES

  • Baeuerle, P. A., and D. Baltimore. 1996. NF-κB: ten years after. Cell 87:13–20.
  • Belich, M. P., A. Salmeron, L. H. Johnston, and S. C. Ley. 1999. TPL-2 kinase regulates the proteolysis of the NF-κB-inhibitory protein NF-κB1 p105. Nature 397:363–368.
  • Bours, V., J. Villalobos, P. R. Burd, K. Kelly, and U. Siebenlist. 1990. Cloning of a mitogen-inducible gene encoding a κB DNA-binding protein with homology to the rel oncogene and to cell-cycle motifs. Nature 348:76–80.
  • Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and U. Siebenlist. 1995. Control of IκBα proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485–1488.
  • Coux, O., and A. L. Goldberg. 1998. Enzymes catalyzing ubiquitination and proteolytic processing of the p105 precursor of nuclear factor κB1. J. Biol. Chem. 273:8820–8828.
  • DiDonato, J., F. Mercurio, C. Rosette, J. W. Li, H. Suyang, S. Ghosh, and M. Karin. 1996. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degration. Mol. Cell. Biol. 16:1295–1304.
  • Donald, R., D. W. Ballard, and J. Hawiger. 1995. Proteolytic processing of NF-κB/IκB in human monocytes. ATP-dependent induction by pro-inflammatory mediators. J. Biol. Chem. 270:9–12.
  • Fan, C. M., and T. Maniatis. 1991. Generation of p50 subunit of NF-κB by processing of p105 through an ATP-dependent pathway. Nature 354:395–398.
  • Feinstein, E., A. Kimchi, D. Wallach, M. Boldin, and E. Varfolomeev. 1995. The death domain: a module shared by proteins with diverse cellular functions. Trends Biochem. Sci. 20:342–344.
  • Fuchs, S. Y., A. Chen, Y. Xiong, Z. Q. Pan, and Z. Ronai. 1999. HOS, a human homolog of Slimb, forms an SCF complex with Skp1 and Cullin1 and targets the phosphorylation-dependent degradation of IκB and β-catenin. Oncogene 18:2039–2046.
  • Hart, M., J. P. Concordet, I. Lassot, I. Albert, R. del los Santos, H. Durand, C. Perret, B. Rubinfeld, F. Margottin, R. Benarous, and P. Polakis. 1999. The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr. Biol. 9:207–210.
  • Hatada, E. N., D. Krappmann, and C. Scheidereit. 2000. NF-κB and the innate immune response. Curr. Opin. Immunol. 12:52–58.
  • Heissmeyer, V., D. Krappmann, F. G. Wulczyn, and C. Scheidereit. 1999. NF-κB p105 is a target of IκB kinases and controls signal induction of Bcl-3-p50 complexes. EMBO J. 18:4766–4778.
  • Heron, E., P. Deloukas, and A. P. van Loon. 1995. The complete exon-intron structure of the 156-kb human gene NFKB1, which encodes the p105 and p50 proteins of transcription factors NF-κB and IκBγ: implications for NF-κB-mediated signal transduction. Genomics 30:493–505.
  • Heusch, M., L. Lin, R. Geleziunas, and W. C. Greene. 1999. The generation of nfkb2 p52: mechanism and efficiency. Oncogene 18:6201–6208.
  • Hirano, F., M. Chung, H. Tanaka, N. Maruyama, I. Makino, D. D. Moore, and C. Scheidereit. 1998. Alternative splicing variants of IκBβ establish differential NF-κB signal responsiveness in human cells. Mol. Cell. Biol. 18:2596–2607.
  • Karin, M., and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18:621–663.
  • Karin, M., and M. Delhase. 2000. The IκB kinase (IKK) and NF-κB: key elements of proinflammatory signalling. Semin. Immunol. 12:85–98.
  • Kieran, M., V. Blank, F. Logeat, J. Vandekerckhove, F. Lottspeich, O. Le Bail, M. B. Urban, P. Kourilsky, P. A. Baeuerle, and A. Israel. 1990. The DNA binding subunit of NF-κB is identical to factor KBF1 and homologous to the re1 oncogene product. Cell 62:1007–1018.
  • Kitagawa, M., S. Hatakeyama, M. Shirane, M. Matsumoto, N. Ishida, K. Hattori, I. Nakamichi, A. Kikuchi, and K. Nakayama. 1999. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J. 18:2401–2410.
  • Krappmann, D., F. Emmerich, U. Kordes, E. Scharschmidt, B. Dorken, and C. Scheidereit. 1999. Molecular mechanisms of constitutive NF-κB/Rel activation in Hodgkin/Reed-Sternberg cells. Oncogene 18:943–953.
  • Krappmann, D., E. N. Hatada, S. Tegethoff, J. Li, A. Klippel, K. Giese, P. A. Baeuerle, and C. Scheidereit. 2000. The IκB kinase (IKK) complex is tripartite and contains IKKγ but not IKAP as a regular component. J. Biol. Chem. 275:29779–29787.
  • Lee, J. W., H. S. Choi, J. Gyuris, R. Brent, and D. D. Moore. 1995. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol. Endocrinol. 9:243–254.
  • Li, J., G. W. Peet, S. S. Pullen, J. Schembri King, T. C. Warren, K. B. Marcu, M. R. Kehry, R. Barton, and S. Jakes. 1998. Recombinant IκB kinases α and β are direct kinases of IκB. J. Biol. Chem. 273:30736–30741.
  • Lin, L., G. N. DeMartino, and W. C. Greene. 1998. Cotranslational biogenesis of NF-κB p50 by the 26S proteasome. Cell 92:819–828.
  • Lin, L., G. N. DeMartino, and W. C. Greene. 2000. Cotranslational dimerization of the rel homology domain of NF-κB1 generates p50–p105 heterodimers and is required for effective p50 production. EMBO J. 19:4712–4722.
  • Lin, L., and S. Ghosh. 1996. A glycine-rich region in NF-κB p105 functions as a processing signal for the generation of the p50 subunit. Mol. Cell. Biol. 16:2248–2254.
  • Lin, X., E. T. J. Cunningham, Y. Mu, R. Geleziunas, and W. C. Greene. 1999. The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-κB acting through the NF-κB-inducing kinase and IκB kinases. Immunity 10:271–280.
  • MacKichan, M. L., F. Logeat, and A. Israel. 1996. Phosphorylation of p105 PEST sequence via a redox-insensitive pathway up-regulates processing of p50 NF-κB. J. Biol. Chem. 271:6084–6091.
  • Margottin, F., S. P. Bour, H. Durand, L. Selig, S. Benichou, V. Richard, D. Thomas, K. Strebel, and R. Benarous. 1998. A novel human WD protein, h-βTrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol. Cell 1:565–574.
  • May, M. J., and S. Ghosh. 1998. Signal transduction through NF-κB. Immunol. Today 19:80–88.
  • Mayo, M. W., and A. S. Baldwin. 2000. The transcription factor NF-κB: control of oncogenesis and cancer therapy resistance. Biochim. Biophys. Acta 1470:M55–M62.
  • Medzhitov, R., and C. Janeway Jr.. 2000. Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173:89–97.
  • Mellits, K. H., R. T. Hay, and S. Goodbourn. 1993. Proteolytic degradation of MAD3 (IκBα) and enhanced processing of the NF-κB precursor p105 are obligatory steps in the activation of NF-κB. Nucleic Acids Res. 21:5059–5066.
  • Mercurio, F., J. A. DiDonato, C. Rosette, and M. Karin. 1993. p105 and p98 precursor proteins play an active role in NF-κB-mediated signal transduction. Genes Dev. 7:705–718.
  • Meyer, R., E. N. Hatada, H. P. Hohmann, M. Haiker, C. Bartsch, U. Rothlisberger, H. W. Lahm, E. J. Schlaeger, A. P. van Loon, and C. Scheidereit. 1991. Cloning of the DNA-binding subunit of human nuclear factor κB: the level of its mRNA is strongly regulated by phorbol ester or tumor necrosis factor α. Proc. Natl. Acad. Sci. USA 88:966–970.
  • Naumann, M., and C. Scheidereit. 1994. Activation of NF-κB in vivo is regulated by multiple phosphorylations. EMBO J. 13:4597–4607.
  • Orian, A., H. Gonen, B. Bercovich, I. Fajerman, E. Eytan, A. Israel, F. Mercurio, K. Iwai, A. L. Schwartz, and A. Ciechanover. 2000. SCFβ-TrCP ubiquitin ligase-mediated processing of NF-κB p105 requires phosphorylation of its C-terminus by IκB kinase. EMBO J. 19:2580–2591.
  • Orian, A., A. L. Schwartz, A. Israel, S. Whiteside, C. Kahana, and A. Ciechanover. 1999. Structural motifs involved in ubiquitin-mediated processing of the NF-κB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain. Mol. Cell. Biol. 19:3664–3673.
  • Orian, A., S. Whiteside, A. Israel, I. Stancovski, A. L. Schwartz, and A. Ciechanover. 1995. Ubiquitin-mediated processing of NF-κB transcriptional activator precursor p105: reconstitution of a cell-free system and identification of the ubiquitin-carrier protein, E2, and a novel ubiquitin-protein ligase, E3, involved in conjugation. J. Biol. Chem. 270:21707–21714.
  • Palombella, V. J., O. J. Rando, A. L. Goldberg, and T. Maniatis. 1994. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78:773–785.
  • Rayet, B., and C. Gelinas. 1999. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18:6938–6947.
  • Rooney, J. W., D. W. Emery, and C. H. Sibley. 1990. 1.3E2, a variant of the B lymphoma 70Z/3, defective in activation of NF-κB and OTF-2. Immunogenetics 31:73–78.
  • Schultz, J., R. R. Copley, T. Doerks, C. P. Ponting, and P. Bork. 2000. SMART: a Web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28:231–234.
  • Shirane, M., S. Hatakeyama, K. Hattori, and K. Nakayama. 1999. Common pathway for the ubiquitination of IκBα, IκBβ, and IκBɛ mediated by the F-box protein FWD1. J. Biol. Chem. 274:28169–28174.
  • Spencer, E., J. Jiang, and Z. J. Chen. 1999. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev. 13:284–294.
  • Suzuki, H., T. Chiba, M. Kobayashi, M. Takeuchi, T. Suzuki, A. Ichiyama, T. Ikenoue, M. Omata, K. Furuichi, and K. Tanaka. 1999. IκBα ubiquitination is catalyzed by an SCF-like complex containing Skp1, cullin-1, and two F-box/WD40-repeat proteins, βTrCP1 and βTrCP2. Biochem. Biophys. Res. Commun. 256:127–132.
  • Suzuki, H., T. Chiba, T. Suzuki, T. Fujita, T. Ikenoue, M. Omata, K. Furuichi, H. Shikama, and K. Tanaka. 2000. Homodimer of two F-box proteins βTrCP1 or βTrCP2 binds to IκBα for signal-dependent ubiquitination. J. Biol. Chem. 275:2877–2884.
  • Tan, P., S. Y. Fuchs, A. Chen, K. Wu, C. Gomez, Z. Ronai, and Z. Q. Pan. 1999. Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of IκBα. Mol. Cell 3:527–533.
  • Thompson, J. E., R. J. Phillips, H. Erdjument Bromage, P. Tempst, and S. Ghosh. 1995. IκBβ regulates the persistent response in a biphasic activation of NF-κB. Cell 80:573–582.
  • Traenckner, E. B., H. L. Pahl, T. Henkel, K. N. Schmidt, S. Wilk, and P. A. Baeuerle. 1995. Phosphorylation of human IκBα on serines 32 and 36 controls IκBα proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14:2876–2883.
  • Whiteside, S. T., J. C. Epinat, N. R. Rice, and A. Israel. 1997. IκBɛ, a novel member of the IκB family, controls RelA and cRel NF-κB activity. EMBO J. 16:1413–1426.
  • Winston, J. T., P. Strack, P. Beer Romero, C. Y. Chu, S. J. Elledge, and J. W. Harper. 1999. The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13:270–283.
  • Wu, C., and S. Ghosh. 1999. β-TrCP mediates the signal-induced ubiquitination of IκBβ. J. Biol. Chem. 274:29591–29594.
  • Wulczyn, F. G., D. Krappmann, and C. Scheidereit. 1996. The NF-κB/Rel and IκB gene families: mediators of immune response and inflammation. J. Mol. Med. 74:749–769.
  • Xiao, T., P. Towb, S. A. Wasserman, and S. R. Sprang. 1999. Three dimensional structure of a complex between the death domains of Pelle and Tube. Cell 99:545–555.
  • Yamaoka, S., G. Courtois, C. Bessia, S. T. Whiteside, R. Weil, F. Agou, H. E. Kirk, R. J. Kay, and A. Israel. 1998. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93:1231–1240.
  • Yaron, A., H. Gonen, I. Alkalay, A. Hatzubai, S. Jung, S. Beyth, F. Mercurio, A. M. Manning, A. Ciechanover, and Y. Ben Neriah. 1997. Inhibition of NF-κB cellular function via specific targeting of the IκB-ubiquitin ligase. EMBO J. 16:6486–6494.
  • Yaron, A., A. Hatzubai, M. Davis, I. Lavon, S. Amit, A. M. Manning, J. S. Andersen, M. Mann, F. Mercurio, and Y. Ben Neriah. 1998. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396:590–594.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.