15
Views
118
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Regulation of Mitogen-Activated Protein Kinases in Cardiac Myocytes through the Small G Protein Rac1

, , , , , , & show all
Pages 1173-1184 | Received 12 Jun 2000, Accepted 22 Nov 2000, Published online: 28 Mar 2023

REFERENCES

  • Akasaki, T., H. Koga, and H. Sumimoto. 1999. Phosphoinositide 3-kinase-dependent and -independent activation of the small GTPase Rac2 in human neutrophils. J. Biol. Chem. 274:18055–18059.
  • Aspenström, P.. 1999. Effectors for the Rho GTPases. Curr. Opin. Cell Biol. 11:95–102.
  • Bagrodia, S., and R. A. Cerione. 1999. PAK to the future. Trends Cell Biol. 9:350–355.
  • Bagrodia, S., S. J. Taylor, K. A. Jordan, L. van Aelst, and R. A. Cerione. 1998. A novel regulator of p21-activated kinases. J. Biol. Chem. 273:23633–23636.
  • Benard, V., B. P. Bohl, and G. M. Bokoch. 1999. Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J. Biol. Chem. 274:13198–13204.
  • Boehm, J. E., O. V. Chaika, and R. E. Lewis. 1999. Rac-dependent anti-apoptotic signaling by the insulin receptor cytoplasmic domain. J. Biol. Chem. 274:28632–28636.
  • Bogoyevitch, M. A., A. Clerk, and P. H. Sugden. 1995. Activation of the mitogen-activated protein kinase cascade by pertussis toxin-sensitive and -insensitive pathways in cultured ventricular cardiomyocytes. Biochem. J. 309:437–443.
  • Bogoyevitch, M. A., P. E. Glennon, M. B. Andersson, A. Clerk, A. Lazou, C. J. Marshall, P. J. Parker, and P. H. Sugden. 1994. Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. The potential role of the cascade in the integration of two signaling pathways leading to myocyte hypertrophy. J. Biol. Chem. 269:1110–1119.
  • Bogoyevitch, M. A., P. E. Glennon, and P. H. Sugden. 1993. Endothelin-1, phorbol esters and phenylephrine stimulate MAP kinase activities in ventricular cardiomyocytes. FEBS Lett. 317:271–275.
  • Bogoyevitch, M. A., A. J. Ketterman, and P. H. Sugden. 1995. Cellular stresses activate c-Jun N-terminal protein kinases (JNKs) in ventricular myocytes cultured from neonatal rat hearts. J. Biol. Chem. 270:29710–29717.
  • Bogoyevitch, M. A., C. J. Marshall, and P. H. Sugden. 1995. Hypertrophic agonists stimulate the activities of the protein kinases c-Raf and A-Raf in cultured ventricular myocytes. J. Biol. Chem. 270:26303–26310.
  • Chiloeches, A., H. F. Paterson, R. M. Marais, A. Clerk, C. J. Marshall, and P. H. Sugden. 1999. Regulation of Ras. GTP loading and Ras-Raf association in neonatal rat ventricular myocytes by G protein-coupled receptor agonists and phorbol esters. Activation of the ERK cascade by phorbol esters is mediated by Ras. J. Biol. Chem. 274:19762–19770.
  • Clerk, A., M. A. Bogoyevitch, M. B. Andersson, and P. H. Sugden. 1994. Differential activation of protein kinase C isoforms by endothelin-1 and phenylephrine, and subsequent stimulation of p42 and p44 mitogen-activated protein kinases in ventricular myocytes cultured from neonatal rat hearts. J. Biol. Chem. 269:32848–32857.
  • Clerk, A., S. J. Fuller, A. Michael, and P. H. Sugden. 1998. Stimulation of “stress-regulated” mitogen-activated protein kinases (SAPKs/JNKs and p38-MAPKs) in perfused rat hearts by oxidative and other stresses. J. Biol. Chem. 273:7228–7234.
  • Clerk, A., A. Michael, and P. H. Sugden. 1998. Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine; a role in cardiac myocyte hypertrophy?. J. Cell Biol. 142:523–535.
  • Clerk, A., and P. H. Sugden. 2000. Small guanine nucleotide-binding proteins and myocardial hypertrophy. Circ. Res. 86:1019–1023.
  • Cohen, P.. 1997. The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell Biol. 7:353–361.
  • Cook, S. A., P. H. Sugden, and A. Clerk. 1999. Regulation of Bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: association with changes in mitochondrial membrane potential. Circ. Res. 85:940–949.
  • Daniels, R. H., and G. M. Bokoch. 1999. p21-activated protein kinase: a crucial component of morphological signaling?. Trends Biochem. Sci. 24:350–355.
  • Fan, W. T., C. A. Koch, C. L. de Hoog, N. P. Fam, and M. F. Moran. 1998. The exchange factor Ras-GRF2 activates Ras-dependent and Rac-dependent mitogen-activated protein kinase pathways. Curr. Biol. 8:935–938.
  • Feig, L. A.. 1999. Tools of the trade: use of dominant-inhibitory mutants of Ras-family GTPases. Nat. Cell Biol. 1:E25–E27.
  • Frost, J. A., H. Steen, P. Shapiro, T. Lewis, N. Ahn, P. E. Shaw, and M. H. Cobb. 1997. Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J. 16:6426–6438.
  • Frost, J. A., S. Xu, M. R. Hutchison, S. Marcus, and M. H. Cobb. 1996. Actions of Rho family small G proteins and p21-activated kinases on mitogen-activated protein kinase family members. Mol. Cell. Biol. 16:3707–3713.
  • Fuller, S. J., S. G. Finn, J. Downward, and P. H. Sugden. 1998. Stimulation of gene expression in neonatal rat ventricular myocytes by Ras is mediated by Ral.GDS and phosphatidylinositol 3-kinase in addition to Raf. Biochem. J. 335:241–246.
  • Fuller, S. J., J. Gillespie-Brown, and P. H. Sugden. 1998. Oncogenic raf, src, and ras stimulate a hypertrophic pattern of gene expression and increase cell size in neonatal rat ventricular myocytes. J. Biol. Chem. 273:18146–18152.
  • Garrington, T. P., and G. L. Johnson. 1999. Organization and regulation of mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 11:211–218.
  • Gillespie-Brown, J., S. J. Fuller, M. A. Bogoyevitch, S. Cowley, and P. H. Sugden. 1995. The mitogen-activated protein kinase kinase MEK1 stimulates a pattern of gene expression typical of the hypertrophic phenotype in rat ventricular cardiomyocytes. J. Biol. Chem. 270:28092–28096.
  • Han, J., K. Luby-Phelps, B. Das, X. Shu, R. D. Mosteller, U. M. Krishna, J. R. Falck, M. A. White, and D. Broek. 1998. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279:558–560.
  • Hilal-Dandan, R., D. T. Merck, J. P. Lujan, and L. L. Brunton. 1994. Coupling of the type A endothelin receptor to multiple responses in adult rat cardiac myocytes. Mol. Pharmacol 45:1183–1190.
  • Hines, W. A., and A. Thorburn. 1998. Ras and Rho are required for Gαq-induced hypertrophic gene expression in neonatal rat cardiac myocytes. J. Mol. Cell. Cardiol. 30:485–494.
  • Hines, W. A., J. Thorburn, and A. Thorburn. 1999. A low-affinity serum response element allows other transcription factors to activate inducible gene expression in cardiac myocytes. Mol. Cell. Biol. 19:1841–1852.
  • Hofmann, F., C. Busch, U. Prepens, I. Just, and K. Aktories. 1997. Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J. Biol. Chem. 272:11074–11078.
  • Hoshijima, M., V. P. Sah, Y. Wang, K. R. Chien, and J. H. Brown. 1998. The low molecular weight GTPase Rho regulates myofibril formation and organization in neonatal rat ventricular myocytes. Involvement of Rho kinase. J. Biol. Chem. 273:7725–7730.
  • Iwaki, K., V. P. Sukhatme, H. E. Shubeita, and K. R. Chien. 1990. α- and β-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an α1-mediated response. J. Biol. Chem. 265:13809–13817.
  • Joneson, T., and D. Bar-Sagi. 1999. Suppression of Ras-induced apoptosis by the Rac GTPase. Mol. Cell. Biol. 19:5892–5901.
  • Joneson, T., M. McDonough, D. Bar-Sagi, and L. van Aelst. 1996. RAC regulation of actin polymerization and proliferation by a pathway distinct from Jun kinase. Science 274:1374–1376.
  • King, A. J., H. Sum, B. Diaz, D. Barnard, W. Miao, S. Bagrodia, and M. S. Marshall. 1998. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 396:180–183.
  • Kiyono, M., T. Satoh, and Y. Kaziro. 1999. G protein βγ subunit-dependent Rac-guanine nucleotide exchange activity of Ras-GRF1/CDC25Mm. Proc. Natl. Acad. Sci. USA 96:4826–4831.
  • Knowlton, K. U., E. Baracchini, R. S. Ross, A. N. Harris, S. A. Henderson, S. M. Evans, C. C. Glembotski, and K. R. Chien. 1991. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during α-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression. J. Biol. Chem. 266:7759–7768.
  • Mackay, D. J. G., and A. Hall. 1998. Rho GTPases. J. Biol. Chem. 273:20685–20688.
  • Mason, C. S., C. J. Springer, R. G. Cooper, G. Superti-Furga, C. J. Marshall, and R. Marais. 1999. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 18:2137–2148.
  • Mattingly, R. R., and I. G. Macara. 1996. Phosphorylation-dependent activation of the Ras.GRF/CDC25Mm exchange factor by muscarinic receptors and G protein βγ subunits. Nature 382:268–272.
  • Minden, A., A. Lin, F.-X. Claret, A. Abo, and M. Karin. 1995. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81:1147–1157.
  • Moriguchi, T., H. Kawasaki, S. Matsuda, Y. Gotoh, and E. Nishida. 1995. Evidence for multiple activators for stress-activated protein kinases/c-Jun amino-terminal kinases. Existence of novel activators. J. Biol. Chem. 270:12969–12972.
  • Nimnual, A. S., B. A. Yatsula, and D. Bar-Sagi. 1998. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science 279:560–563.
  • Nishida, K., Y. Kaziro, and T. Satoh. 1999. Anti-apoptotic function of Rac in hematopoietic cells. Oncogene 18:407–415.
  • Nobes, C. D., P. Hawkins, L. Stephens, and A. Hall. 1995. Activation of the small GTP-binding proteins rho and rac by growth factor receptors. J. Cell Sci. 108:225–233.
  • Pracyk, J. B., K. Tanaka, D. D. Hegland, K.-S. Kim, R. Sethi, I. I. Rovira, D. R. Blazina, L. Lee, J. T. Bruder, I. Kovesdi, P. J. Goldshmidt-Clermont, K. Irani, and T. Finkel. 1998. A requirement for the rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy. J. Clin. Investig. 102:929–937.
  • Sah, V. P., M. Hoshijima, K. R. Chien, and J. H. Brown. 1996. Rho is required for Gαq and α1-adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways. J. Biol. Chem. 271:31185–31190.
  • Sander, E. E., S. van Delft, J. P. ten Klooster, T. Reid, R. A. van der Kammen, F. Michiels, and J. G. Collard. 1998. Matrix-dependent Tiam/Rac1 signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol. 143:1385–1398.
  • Scita, G., J. Nordstrom, R. Carbone, P. Tenca, G. Giardina, S. Gutkind, M. Bjarnegard, C. Betsholtz, and P. P. Di Fiore. 1999. EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401:290–293.
  • Sehr, P., G. Joseph, H. Genth, I. Just, E. Pick, and K. Aktories. 1998. Glucosylation and ADP ribosylation of rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling. Biochemistry 37:5296–5304.
  • Sprenkle, A. B., S. F. Murray, and C. C. Glembotski. 1995. Involvement of multiple cis elements in basal and α-adrenergic agonist-inducible atrial natriuretic factor transcription. Roles for serum response elements and an SP-1-like element. Circ. Res. 77:1060–1069.
  • Sugden, P. H.. 1999. Signaling in myocardial hypertrophy: life after calcineurin?. Circ. Res. 84:633–646.
  • Sugden, P. H., and A. Clerk. 1998. Cellular mechanisms of cardiac hypertrophy. J. Mol. Med. 76:725–746.
  • Sugden, P. H., and A. Clerk. 1998. “Stress-responsive” mitogen-activated protein kinases in the myocardium. Circ. Res. 83:345–352.
  • Tang, Y., J. Yu, and J. Field. 1999. Signals from the Ras, Rac, and Rho GTPases converge on the Pak protein kinase in Rat-1 fibroblasts. Mol. Cell. Biol. 19:1881–1891.
  • Thorburn, J., J. A. Frost, and A. Thorburn. 1994. Mitogen-activated protein kinases mediate changes in gene expression, but not cytoskeletal organization associated with cardiac muscle hypertrophy. J. Cell Biol. 126:1565–1572.
  • Thorburn, J., M. McMahon, and A. Thorburn. 1994. Raf-1 kinase activity is necessary and sufficient for gene expression changes but not sufficient for cellular morphology changes associated with cardiac myocyte hypertrophy. J. Biol. Chem. 269:30580–30586.
  • Thorburn, J., S. Xu, and A. Thorburn. 1997. MAP kinase and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. EMBO J. 16:1888–1900.
  • van Leeuwen, F. N., S. van Delft, H. E. Kain, R. van der Kammen, and J. G. Collard. 1999. Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading. Nat. Cell Biol. 1:242–248.
  • Vojtek, A. B., and C. J. Der. 1998. Increasing complexity of the Ras signaling pathway. J. Biol. Chem 273:19925–19928.
  • Yue, T. L., J.-L. Gu, C. Wang, A. D. Reith, J. C. Lee, R. C. Mirabile, R. Kreutz, Y. Wang, B. Maleeff, A. A. Parsons, and E. H. Ohlstein. 2000. Extracellular signal-regulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiomyocyte hypertrophy. J. Biol. Chem. 275:37895–37901.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.