15
Views
23
CrossRef citations to date
0
Altmetric
Gene Expression

Zygotic Regulation of Maternal Cyclin A1 and B2 mRNAs

, , &
Pages 1662-1671 | Received 30 Aug 2000, Accepted 07 Dec 2000, Published online: 28 Mar 2023

REFERENCES

  • Audic, Y., F. Omilli, and H. B. Osborne. 1998. Embryo deadenylation element-dependent deadenylation is enhanced by a cis element containing AUU repeats. Mol. Cell. Biol. 18:6879–6884.
  • Audic, Y., F. Omilli, and H. B. Osborne. 1997. Postfertilization deadenylation of mRNAs in Xenopus laevis embryos is sufficient to cause their degradation at the blastula stage. Mol. Cell. Biol. 17:209–218.
  • Barnhart, K. M.. 1999. Simplified PCR-mediated, linker-scanning mutagenesis. BioTechniques 26:624–626.
  • Brewer, G.. 1998. Characterization of c-myc 3′ to 5′ mRNA decay activities in an in vitro system. J. Biol. Chem. 273:34770–34774.
  • Chevalier, S., A. Couturier, I. Chartrain, R. Le Guellec, C. Beckhelling, K. Le Guellec, M. Philippe, and C. C. Ford. 1996. Xenopus cyclin E, a nuclear phosphoprotein, accumulates when oocytes gain the ability to initiate DNA replication. J. Cell Sci. 109:1173–1184.
  • Dehlin, E., M. Wormington, C. G. Korner, and E. Wahle. 2000. Cap-dependent deadenylation of mRNA. EMBO J. 19:1079–1086.
  • Deshaies, R. J.. 1995. The self-destructive personality of a cell cycle in transition. Curr. Opin. Cell Biol. 7:781–789.
  • Fox, C. A., M. D. Sheets, and M. Wickens. 1989. Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev. 3:2151–2162.
  • Fox, C. A., and M. Wickens. 1990. Poly(A) removal during oocyte maturation: a default reaction selectively prevented by specific sequences in the 3′ UTR of certain maternal mRNAs. Genes Dev. 4:2287–2298.
  • Furuno, N., N. den Elzen, and J. Pines. 1999. Human cyclin A is required for mitosis until mid prophase. J. Cell Biol. 147:295–306.
  • Gao, M., D. T. Fritz, L. P. Ford, and J. Wilusz. 2000. Interaction between a poly(A)-specific ribonuclease and the 5′ cap influences mRNA deadenylation rates in vitro. Mol. Cell 5:479–488.
  • Hake, L. E., and J. D. Richter. 1994. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79:617–627.
  • Harland, R., and L. Misher. 1988. Stability of RNA in developing Xenopus embryos and identification of a destabilizing sequence in TFIIIA messenger RNA. Development 102:837–852.
  • Hartley, R. S., R. E. Rempel, and J. L. Maller. 1996. In vivo regulation of the early embryonic cell cycle in Xenopus. Dev. Biol. 173:408–419.
  • Hartley, R. S., J. C. Sible, A. L. Lewellyn, and J. L. Maller. 1997. A role for cyclin E/Cdk2 in the timing of the midblastula transition in Xenopus embryos. Dev. Biol. 188:312–321.
  • Heasman, J., S. Holwill, and C. Wylie. 1991. Fertilization of cultured Xenopus oocytes and use in studies of maternally inherited molecules. Methods Cell Biol. 36:213–230.
  • Howe, J. A., M. Howell, T. Hunt, and J. W. Newport. 1995. Identification of a developmental timer regulating the stability of embryonic cyclin A and a new somatic A-type cyclin at gastrulation. Genes Dev. 9:1164–1176.
  • King, R. W., R. J. Deshaies, J. M. Peters, and M. W. Kirschner. 1996. How proteolysis drives the cell cycle. Science 274:1652–1659.
  • Korner, C. G., M. Wormington, M. Muckenthaler, S. Schneider, E. Dehlin, and E. Wahle. 1998. The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. EMBO J. 17:5427–5437.
  • Krieg, P. A., and D. A. Melton. 1985. Developmental regulation of a gastrula-specific gene injected into fertilized Xenopus eggs. EMBO J. 4:3463–3471.
  • Legagneux, V., F. Omilli, and H. B. Osborne. 1995. Substrate-specific regulation of RNA deadenylation in Xenopus embryos and activated egg extracts. RNA 1:1001–1008.
  • Minshull, J., J. J. Blow, and T. Hunt. 1989. Translation of cyclin mRNA is necessary for extracts of activated xenopus eggs to enter mitosis. Cell 56:947–956.
  • Minshull, J., R. Golsteyn, C. S. Hill, and T. Hunt. 1990. The A- and B-type cyclin associated cdc2 kinases in Xenopus turn on and off at different times in the cell cycle. EMBO J. 9:2865–2875.
  • Newport, J., and M. Dasso. 1989. On the coupling between DNA replication and mitosis. J. Cell Sci. Suppl. 12:149–160.
  • Newport, J., and M. Kirschner. 1982. A major developmental transition in early Xenopus embryos. I. Characterization and timing of cellular changes at the midblastula stage. Cell 30:673–686.
  • Nieuwkoop, P. D., and J. Faber. 1967. Normal table of Xenopus laevis (Daudin). North-Holland Publishing Co., Amsterdam, The Netherlands
  • Osborne, H. B., and J. D. Richter. 1997. Translational control by polyadenylation during early development. Prog. Mol. Subcell. Biol. 18:173–198.
  • Paillard, L., V. Legagneux, and H. B. Osborne. 1996. Poly(A) metabolism in Xenopus laevis embryos: substrate-specific and default poly(A) nuclease activities are mediated by two distinct complexes. Biochimie 78:399–407.
  • Paillard, L., F. Omilli, V. Legagneux, T. Bassez, D. Maniey, and H. B. Osborne. 1998. EDEN and EDEN-BP, a cis element and an associated factor that mediate sequence-specific mRNA deadenylation in Xenopus embryos. EMBO J. 17:278–287.
  • Paris, J., and M. Philippe. 1990. Poly(A) metabolism and polysomal recruitment of maternal mRNAs during early Xenopus development. Dev. Biol. 140:221–224.
  • Ralle, T., D. Gremmels, and R. Stick. 1999. Translational control of nuclear lamin B1 mRNA during oogenesis and early development of Xenopus. Mech. Dev. 84:89–101.
  • Reinhart, B. J., F. J. Slack, M. Basson, A. E. Pasquinelli, J. C. Bettinger, A. E. Rougvie, H. R. Horvitz, and G. Ruvkun. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906.
  • Rempel, R. E., S. B. Sleight, and J. L. Maller. 1995. Maternal Xenopus Cdk2-cyclin E complexes function during meiotic and early embryonic cell cycles that lack a G1 phase. J. Biol. Chem. 270:6843–6855.
  • Salles, F. J., W. G. Richards, and S. Strickland. 1999. Assaying the polyadenylation state of mRNAs. Methods 17:38–45.
  • Sheets, D. M., C. A. Fox, T. Hunt, G. V. Woude, and M. Wickens. 1994. The 3′-untranslated regions of c-mos and cyclin mRNAs stimulate translation by regulating cytoplasmic polyadenylation. Genes Dev. 8:926–938.
  • Sible, J. C., J. A. Anderson, A. L. Lewellyn, and J. L. Maller. 1997. Zygotic transcription is required to block a maternal program of apoptosis in Xenopus embryos. Dev. Biol. 189:335–346.
  • Stebbins-Boaz, B., L. E. Hake, and J. D. Richter. 1996. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J. 15:2582–2592.
  • Stewart, E., H. Kobayashi, D. Harrison, and T. Hunt. 1994. Destruction of Xenopus cyclins A and B2, but not B1, requires binding to p34cdc2. EMBO J. 13:584–594.
  • Strausfeld, U. P., M. Howell, P. Descombes, S. Chevalier, R. E. Rempel, J. Adamczewski, J. L. Maller, T. Hunt, and J. J. Blow. 1996. Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. J. Cell Sci. 109:1555–1563.
  • Thompson, S. R., E. B. Goodwin, and M. Wickens. 2000. Rapid deadenylation and poly(A)-dependent translational repression mediated by the Caenorhabditis elegans tra-2 3′ untranslated region in Xenopus embryos. Mol. Cell. Biol. 20:2129–2137.
  • Tian, Q., T. Nakayama, M. P. Dixon, and J. L. Christian. 1999. Post-transcriptional regulation of Xwnt-8 expression is required for normal myogenesis during vertebrate embryonic development. Development 126:3371–3380.
  • Varnum, S. M., and W. M. Wormington. 1990. Deadenylation of maternal mRNAs during Xenopus oocyte maturation does not require specific cis-sequences: a default mechanism for translational control. Genes Dev. 4:2278–2286.
  • Voeltz, G. K., and J. A. Steitz. 1998. AUUUA sequences direct mRNA deadenylation uncoupled from decay during Xenopus early development. Mol. Cell. Biol. 18:7537–7545.
  • Walker, D. H., and J. L. Maller. 1991. Role for cyclin A in the dependence of mitosis on completion of DNA replication. Nature 354:314–317.
  • Wang, W., M. C. Caldwell, S. Lin, H. Furneaux, and M. Gorospe. 2000. HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J. 19:2340–2350.
  • Xu, N., C. Y. Chen, and A. B. Shyu. 1997. Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol. Cell. Biol. 17:4611–4621.
  • Zubiaga, A. M., J. G. Belasco, and M. E. Greenberg. 1995. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol. Cell. Biol. 15:2219–2230.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.