28
Views
25
CrossRef citations to date
0
Altmetric
Gene Expression

Role of the 3′ Splice Site in U12-Dependent Intron Splicing

, , &
Pages 1942-1952 | Received 18 Oct 2000, Accepted 13 Dec 2000, Published online: 28 Mar 2023

REFERENCES

  • Anderson, K., and M. J. Moore. 1997. Bimolecular exon ligation by the human spliceosome. Science 276:1712–1716.
  • Anderson, K., and M. J. Moore. 2000. Bimolecular exon ligation by the human spliceosome bypasses early 3′ splice site AG recognition and requires NTP hydrolysis. RNA (NY) 6:16–25.
  • Boudvillain, M., A. de Lencastre, and A. M. Pyle. 2000. A tertiary interaction that links active-site domains to the 5′ splice site of a group II intron. Nature 406:315–318.
  • Brys, A., and B. Schwer. 1996. Requirement for SLU7 in yeast pre-mRNA splicing is dictated by the distance between the branchpoint and the 3′ splice site. RNA (NY) 2:707–717.
  • Burge, C. B., R. A. Padgett, and P. A. Sharp. 1998. Evolutionary fates and origins of U12-type introns. Mol. Cell 2:773–785.
  • Burge, C. B., T. Tuschl, and P. A. Sharp. 1999. Splicing of precursors to mRNAs by the spliceosome. The RNA world II.. R. F. Gestland, T. Cech, and J. F. Atkins. 525–560. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Chanfreau, G., P. Legrain, B. Dujon, and A. Jacquier. 1994. Interaction between the first and last nucleotides of pre-mRNA introns is a determinant of 3′ splice site selection in S. cerevisiae. Nucleic Acids Res. 22:1981–1987.
  • Chen, S., K. Anderson, and M. J. Moore. 2000. Evidence for a linear search in bimolecular 3′ splice site AG selection. Proc. Natl. Acad. Sci. USA 97:593–598.
  • Chua, K., and R. Reed. 1999. Human step II splicing factor hSlu7 functions in restructuring the spliceosome between the catalytic steps of splicing. Genes Dev. 13:841–850.
  • Chua, K., and R. Reed. 1999. The RNA splicing factor hSlu7 is required for correct 3′ splice-site choice. Nature 402:207–210.
  • Dietrich, R. C., R. Incoravia, and R. A. Padgett. 1997. Terminal intron dinucleotide sequences do not distinguish between U2- and U12-dependent introns. Mol. Cell 1:151–160.
  • Frank, D., and C. Guthrie. 1992. An essential splicing factor, SLU7, mediates 3′ splice site choice in yeast. Genes Dev. 6:2112–2124.
  • Frendewey, D., and W. Keller. 1985. Stepwise assembly of a pre-mRNA splicing complex requires U-snRNPs and specific intron sequences. Cell 42:355–367.
  • Frilander, M. J., and J. A. Steitz. 1999. Initial recognition of U12-dependent introns requires both U11/5′ splice-site and U12/branchpoint interactions. Genes Dev. 13:851–863.
  • Gozani, O., J. G. Patton, and R. Reed. 1994. A novel set of spliceosome-associated proteins and the essential splicing factor PSF bind stably to pre-mRNA prior to catalytic step II of the splicing reaction. EMBO J. 13:3356–3367.
  • Hall, S. L., and R. A. Padgett. 1994. Conserved sequences in a class of rare eukaryotic introns with non-consensus splice sites. J. Mol. Biol. 239:357–365.
  • Hall, S. L., and R. A. Padgett. 1996. Requirement of U12 snRNA for the in vivo splicing of a minor class of eukaryotic nuclear pre-mRNA introns. Science 271:1716–1718.
  • Helfman, D. M., and W. M. Ricci. 1989. Branch point selection in alternative splicing of tropomyosin pre-mRNA. Nucleic Acids Res. 17:5633–5650.
  • Kolossova, I., and R. A. Padgett. 1997. U11 snRNA interacts in vivo with the 5′ splice site of U12-dependent (AU-AC) introns. RNA (NY) 3:227–233.
  • Konarska, M. M.. 1989. Analysis of splicing complexes and small nuclear ribonucleoprotein particles by native gel electrophoresis. Methods Enzymol. 180:442–453.
  • Lafreniere, R. G., D. L. Rochefort, Z. Kibar, E. A. Fon, F. Han, J. Cochius, X. Kang, S. Baird, R. G. Korneluk, E. Andermann, J. M. Rommens, and G. A. Rouleau. 1996. Isolation and characterization of GT335, a novel human gene conserved in Escherichia coli and mapping to 21q22.3. Genomics 38:264–272.
  • Luukkonen, B. G. M., and B. Seraphin. 1997. The role of branchpoint-3′ splice site spacing and interaction between intron terminal nucleotides in 3′ splice site selection in Saccharomyces cerevisiae. EMBO J. 16:779–792.
  • Merendino, L., S. Guth, D. Bilbao, C. Martinez, and J. Valcarcel. 1999. Inhibition of msl-2 splicing by sex-lethal reveals interaction between U2AF35 and the 3′ splice site AG. Nature 402:838–841.
  • Moore, M. J.. 2000. Intron recognition comes of AGe. Nat. Struct. Biol. 7:14–16.
  • Mount, S. M.. 1982. A catalogue of splice junction sequences. Nucleic Acids Res. 10:459–472.
  • Nelson, K. K., and M. R. Green. 1989. Mammalian U2 snRNP has a sequence-specific RNA-binding activity. Genes Dev. 3:1562–1571.
  • Neuman, E., W. R. Sellers, J. A. McNeil, J. B. Lawrence, and W. G. Kaelin Jr.. 1996. Structure and partial genomic sequence of the human E2F1 gene. Gene 173:163–169.
  • Ohshima, T., J. W. Nagle, H. C. Pant, J. B. Joshi, C. A. Kozak, R. O. Brady, and A. B. Kulkarni. 1995. Molecular cloning and chromosomal mapping of the mouse cyclin-dependent kinase 5 gene. Genomics 28:585–588.
  • Parker, R., and P. G. Siliciano. 1993. Evidence for an essential non-Watson-Crick interaction between the first and last nucleotides of a nuclear pre-mRNA intron. Nature 361:660–662.
  • Reed, R.. 2000. Mechanisms of fidelity in pre-mRNA splicing. Curr. Opin. Cell Biol. 12:340–345.
  • Reed, R.. 1989. The organization of 3′ splice-site sequences in mammalian introns. Genes Dev. 3:2113–2123.
  • Reed, R., J. Griffith, and T. Maniatis. 1988. Purification and visualization of native spliceosomes. Cell 53:949–961.
  • Ruskin, B., and M. R. Green. 1985. Role of the 3′ splice site consensus sequence in mammalian pre-mRNA splicing. Nature 317:732–734.
  • Rymond, B. C., and M. Rosbash. 1985. Cleavage of 5′ splice site and lariat formation are independent of 3′ splice site in yeast mRNA splicing. Nature 317:735–737.
  • Rymond, B. C., and M. Rosbash. 1992. Yeast pre-mRNA splicing. The molecular and cellular biology of the yeast Saccharomyces: gene expression. E. W. Jones, J. R. Pringle, and J. R. Broach. 2:143–192. Cold Spring Harbor Press, Cold Spring Harbor, N.Y
  • Scadden, A. D. J., and C. W. J. Smith. 1995. Interactions between the terminal bases of mammalian introns are retained in inosine-containing pre-mRNAs. EMBO J. 14:3236–3246.
  • Smith, C. W., and B. Nadal-Ginard. 1989. Mutually exclusive splicing of alpha-tropomyosin exons enforced by an unusual lariat branch point location: implications for constitutive splicing. Cell 56:749–758.
  • Smith, C. W. J., T. T. Chu, and B. Nadal-Ginard. 1993. Scanning and competition between AGs are involved in 3′ splice site selection in mammalian introns. Mol. Cell. Biol. 13:4939–4952.
  • Smith, C. W. J., E. B. Porro, J. G. Patton, and B. Nadal-Ginard. 1989. Scanning from an independently specified branch point defines the 3′ splice site of mammalian introns. Nature 342:243–247.
  • Tarn, W.-Y., and J. A. Steitz. 1996. Highly diverged U4 and U6 small nuclear RNAs required for splicing rare AT-AC introns. Science 273:1824–1832.
  • Tarn, W.-Y., and J. A. Steitz. 1996. A novel spliceosome containing U11, U12 and U5 snRNPs excises a minor class (AT-AC) intron in vitro. Cell 84:801–811.
  • Umen, J. G., and C. Guthrie. 1995. The second catalytic step of pre-mRNA splicing. RNA (NY) 1:869–885.
  • Wu, Q., and A. R. Krainer. 1999. AT-AC pre-mRNA splicing mechanisms and conservation of minor introns in voltage-gated ion channel genes. Mol. Cell. Biol. 19:3225–3236.
  • Wu, Q., and A. R. Krainer. 1998. Purine-rich enhancers function in the AT-AC pre-mRNA splicing pathway and do so independently of intact U1 snRNP. RNA (NY) 4:1664–1674.
  • Wu, Q., and A. R. Krainer. 1997. Splicing of a divergent subclass of AT-AC introns requires the major spliceosomal snRNAs. RNA (NY) 3:586–601.
  • Wu, S., C. M. Romfo, T. W. Nilsen, and M. R. Green. 1999. Functional recognition of the 3′ splice site AG by the splicing factor U2AF35. Nature 402:832–835.
  • Zhuang, Y., and A. M. Weiner. 1990. The conserved dinucleotide AG of the 3′ splice site may be recognized twice during in vitro splicing of mammalian mRNA precursors. Gene 90:263–269.
  • Zorio, D. A. R., and T. Blumenthal. 1999. Both subunits of U2AF recognize the 3′ splice site in Caenorhabditis elegans. Nature 402:835–838.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.