76
Views
128
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Repair of Double-Strand Breaks by Homologous Recombination in Mismatch Repair-Defective Mammalian Cells

&
Pages 2671-2682 | Received 07 Dec 2000, Accepted 31 Jan 2001, Published online: 28 Mar 2023

REFERENCES

  • Abuin, A., H. Zhang, and A. Bradley. 2000. Genetic analysis of mouse embryonic stem cells bearing Msh3 and Msh2 single and compound mutations. Mol. Cell. Biol. 20:149–157.
  • Acharya, S., T. Wilson, S. Gradia, M. F. Kane, S. Guerrette, G. T. Marsischky, R. Kolodner, and R. Fishel. 1996. hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc. Natl. Acad. Sci. USA 93:13629–13634.
  • Belmaaza, A., and P. Chartrand. 1994. One-sided invasion events in homologous recombination at double-strand breaks. Mutat. Res. 314:199–208.
  • Bocker, T., J. Schlegel, F. Kullmann, G. Stumm, H. Zirngibl, J. T. Epplen, and J. Ruschoff. 1996. Genomic instability in colorectal carcinomas: comparison of different evaluation methods and their biological significance. J. Pathol. 179:15–19.
  • Boland, C. R.. 1998. Hereditary nonpolyposis colorectal cancer. The genetic basis of human cancer.. B. Vogelstein, and K. W. Kinzler. 333–346. McGraw-Hill, New York, N.Y
  • Buermeyer, A. B., S. M. Deschenes, S. M. Baker, and R. M. Liskay. 1999. Mammalian DNA mismatch repair. Annu. Rev. Genet. 33:533–564.
  • Chen, W., and S. Jinks-Robertson. 1998. Mismatch repair proteins regulate heteroduplex formation during mitotic recombination in yeast. Mol. Cell. Biol. 18:6525–6537.
  • Chen, W., and S. Jinks-Robertson. 1999. The role of the mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast. Genetics 151:1299–1313.
  • Cooper, D. N., M. Krawczak, and S. E. Antonarkis. 1998. The nature and mechanisms of human gene mutation. The genetic basis of human cancer.. B. Vogelstein, and K. W. Kinzler. 65–94. McGraw-Hill, New York, N.Y
  • Datta, A., A. Adjiri, L. New, G. F. Crouse, and S. Jinks Robertson. 1996. Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:1085–1093.
  • Datta, A., M. Hendrix, M. Lipsitch, and S. Jinks-Robertson. 1997. Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc. Natl. Acad. Sci. USA 94:9757–9762.
  • de Laat, W. L., N. G. Jaspers, and J. H. Hoeijmakers. 1999. Molecular mechanism of nucleotide excision repair. Genes Dev. 13:768–785.
  • de Wind, N., M. Dekker, A. Berns, M. Radman, and H. te Riele. 1995. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82:321–330.
  • de Wind, N., M. Dekker, N. Claij, L. Jansen, Y. van Klink, M. Radman, G. Riggins, M. van der Valk, K. van't Wout, and H. te Riele. 1999. HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat. Genet. 23:359–362.
  • Donoho, G., M. Jasin, and P. Berg. 1998. Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol. Cell. Biol. 18:4070–4078.
  • Drummond, J. T., G. M. Li, M. J. Longley, and P. Modrich. 1995. Isolation of an hMSH2–p160 heterodimer that restores DNA mismatch repair to tumor cells. Science 268:1909–1912.
  • Elliott, B., C. Richardson, J. Winderbaum, J. A. Nickoloff, and M. Jasin. 1998. Gene conversion tracts from double-strand break repair in mammalian cells. Mol. Cell. Biol. 18:93–101.
  • Eshleman, J. R., G. Casey, M. E. Kochera, W. D. Sedwick, S. E. Swinler, M. L. Veigl, J. K. Willson, S. Schwartz, and S. D. Markowitz. 1998. Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53. Oncogene 17:719–725.
  • Ferguson, D. O., and W. K. Holloman. 1996. Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc. Natl. Acad. Sci. USA 93:5419–5424.
  • Gurin, C. C., M. G. Federici, L. Kang, and J. Boyd. 1999. Causes and consequences of microsatellite instability in endometrial carcinoma. Cancer Res. 59:462–466.
  • Haber, J. E.. 1999. DNA repair. Gatekeepers of recombination. Nature 398:665, 667.
  • Haber, J. E., B. L. Ray, J. M. Kolb, and C. I. White. 1993. Rapid kinetics of mismatch repair of heteroduplex DNA that is formed during recombination in yeast. Proc. Natl. Acad. Sci. USA 90:3363–3367.
  • Hanahan, D., and R. A. Weinberg. 2000. The hallmarks of cancer. Cell 100:57–70.
  • Johnson, R. D., and M. Jasin. 2000. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19:3398–3407.
  • Johnson, R. E., G. K. Kovvali, L. Prakash, and S. Prakash. 1996. Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability. J. Biol. Chem. 271:7285–7288.
  • Lacalle, R. A., D. Pulido, J. Vara, M. Zalacain, and A. Jimenez. 1989. Molecular analysis of the pac gene encoding a puromycin N-acetyl transferase from Streptomyces alboniger. Gene 79:375–380.
  • Lengauer, C., K. W. Kinzler, and B. Vogelstein. 1998. Genetic instabilities in human cancers. Nature 396:643–649.
  • Lengauer, C., K. W. Kinzler, and B. Vogelstein. 1997. Genetic instability in colorectal cancers. Nature 386:623–627.
  • Leung, W., A. Malkova, and J. E. Haber. 1997. Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc. Natl. Acad. Sci. USA 94:6851–6856.
  • Li, J., and M. D. Baker. 2000. Use of a small palindrome genetic marker to investigate mechanisms of double-strand-break repair in mammalian cells. Genetics 154:1281–1289.
  • Li, J., L. R. Read, and M. D. Baker. 2001. The mechanism of mammalian gene replacement is consistent with the formation of long regions of heteroduplex DNA associated with two crossing-over events. Mol. Cell. Biol. 21:501–510.
  • Liang, F., M. Han, P. J. Romanienko, and M. Jasin. 1998. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl. Acad. Sci. USA 95:5172–5177.
  • Liang, F., P. J. Romanienko, D. T. Weaver, P. A. Jeggo, and M. Jasin. 1996. Chromosomal double-strand break repair in Ku80-deficient cells. Proc. Natl. Acad. Sci. USA 93:8929–8933.
  • Loeb, L. A.. 1991. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51:3075–3079.
  • Marsischky, G. T., N. Filosi, M. F. Kane, and R. Kolodner. 1996. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10:407–420.
  • McGill, C., B. Shafer, and J. Strathern. 1989. Coconversion of flanking sequences with homothallic switching. Cell 57:459–467.
  • Modrich, P., and R. Lahue. 1996. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 65:101–133.
  • Nassif, N., J. Penney, S. Pal, W. R. Engels, and G. B. Gloor. 1994. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell. Biol. 14:1613–1625.
  • Negritto, M. T., X. Wu, T. Kuo, S. Chu, and A. M. Bailis. 1997. Influence of DNA sequence identity on efficiency of targeted gene replacement. Mol. Cell. Biol. 17:278–286.
  • Pâques, F., and J. E. Haber. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63:349–404.
  • Pâques, F., and J. E. Haber. 1997. Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:6765–6771.
  • Petes, T. D., R. E. Malone, and L. S. Symington. 1991. Recombination in yeast. The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics.. J. R. Broach, J. R. Pringle, and E. W. Jones. 407–521. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Petit, M. A., J. Dimpfl, M. Radman, and H. Echols. 1991. Control of large chromosomal duplications in Escherichia coli by the mismatch repair system. Genetics 129:327–332.
  • Ray, B. L., C. I. White, and J. E. Haber. 1991. Heteroduplex formation and mismatch repair of the “stuck” mutation during mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:5372–5380.
  • Rayssiguier, C., D. S. Thaler, and M. Radman. 1989. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342:396–401.
  • Richardson, C., M. E. Moynahan, and M. Jasin. 1998. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 12:3831–3842.
  • Robertson, E. J.. 1987. Embryo-derived stem cell lines. Teratocarcinomas and embryonic stem cells: a practical approach.. E. J. Robertson. 71–112. IRL Press, Washington, D.C.
  • Rouet, P., F. Smith, and M. Jasin. 1994. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14:8096–8106.
  • Saparbaev, M., L. Prakash, and S. Prakash. 1996. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae. Genetics 142:727–736.
  • Sargent, R. G., M. A. Brenneman, and J. H. Wilson. 1997. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol. Cell. Biol. 17:267–277.
  • Schmid, C. W.. 1996. Alu: structure, origin, evolution, significance and function of one-tenth of human DNA. Prog. Nucleic Acid Res. Mol. Biol. 53:283–319.
  • Selva, E. M., L. New, G. F. Crouse, and R. S. Lahue. 1995. Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Genetics 139:1175–1188.
  • Smih, F., P. Rouet, P. J. Romanienko, and M. Jasin. 1995. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 23:5012–5019.
  • Strout, M. P., G. Marcucci, C. D. Bloomfield, and M. A. Caligiuri. 1998. The partial tandem duplication of ALL1 (MLL) is consistently generated by Alu-mediated homologous recombination in acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 95:2390–2395.
  • Sugawara, N., F. Pâques, M. Colaiacovo, and J. E. Haber. 1997. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc. Natl. Acad. Sci. USA 94:9214–9921.
  • Taghian, D. G., and J. A. Nickoloff. 1997. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol. Cell. Biol. 17:6386–6393.
  • Thomas, K. R., and M. R. Capecchi. 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512.
  • Weng, Y. S., and J. A. Nickoloff. 1998. Evidence for independent mismatch repair processing on opposite sides of a double-strand break in Saccharomyces cerevisiae. Genetics 148:59–70.
  • Worth, L. Jr., S. Clark, M. Radman, and P. Modrich. 1994. Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc. Natl. Acad. Sci. USA 91:3238–3241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.