17
Views
33
CrossRef citations to date
0
Altmetric
Gene Expression

Reduction of Target Gene Expression by a Modified U1 snRNA

, , , , &
Pages 2815-2825 | Received 03 Aug 2000, Accepted 17 Jan 2001, Published online: 28 Mar 2023

REFERENCES

  • Ashe, M. P., A. Furger, and N. J. Proudfoot. 2000. Stem-loop 1 of the U1 snRNP plays a critical role in the suppression of HIV-1 polyadenylation. RNA 6:170–177.
  • Ashe, M. P., P. Griffin, W. James, and N. J. Proudfoot. 1995. Poly(A) site selection in the HIV-1 provirus: inhibition of promoter-proximal polyadenylation by the downstream major splice donor site. Genes Dev. 9:3008–3025.
  • Ashe, M. P., L. H. Pearson, and N. J. Proudfoot. 1997. The HIV-1 5′ LTR poly(A) site is inactivated by U1 snRNP interaction with the downstream major splice donor site. EMBO J. 16:5752–5763.
  • Baker, C. C.. 1990. An improved chloramphenicol acetyltransferase expression vector system for mapping transcriptional and post-transcriptional regulatory elements in animal cells. Recombinant systems in protein expression.. K. K. Alitalo, et al.. 75–86. Elsevier Science Publishers B. V., Amsterdam, The Netherlands
  • Barksdale, S. K., and C. C. Baker. 1995. The human immunodeficiency virus type 1 Rev protein and the Rev-responsive element counteract the effect of an inhibitory 5′ splice site in a 3′ untranslated region. Mol. Cell. Biol. 15:2962–2971.
  • Berget, S. M.. 1995. Exon recognition in vertebrate splicing. J. Biol. Chem. 270:2411–2414.
  • Bernstein, P., and J. Ross. 1989. Poly(A), poly(A) binding protein and the regulation of mRNA stability. Trends Biochem. Sci. 14:373–377.
  • Bertrand, E., D. Castanotto, C. Zhou, C. Carbonnelle, N. S. Lee, P. Good, S. Chatterjee, T. Grange, R. Pictet, D. Kohn, D. Engelke, and J. J. Rossi. 1997. The expression cassette determines the functional activity of ribozymes in mammalian cells by controlling their intracellular localization. RNA 3:75–88.
  • Birnstiel, M. L.. 1988. Structure and function of major and minor small nuclear ribonucleoprotein particles. Springer-Verlag, Berlin, Germany
  • Blencowe, B. J., J. A. Nickerson, R. Issner, S. Penman, and P. A. Sharp. 1994. Association of nuclear matrix antigens with exon-containing splicing complexes. J. Cell Biol. 127:593–607.
  • Boelens, W. C., E. J. Jansen, W. J. van Venrooij, R. Stripecke, I. W. Mattaj, and S. I. Gunderson. 1993. The human U1 snRNP-specific U1A protein inhibits polyadenylation of its own pre-mRNA. Cell 72:881–892.
  • Bramlage, B., E. Luzi, and F. Eckstein. 1998. Designing ribozymes for the inhibition of gene expression. Trends Biotechnol. 16:434–438.
  • Burkard, K. T., and J. S. Butler. 2000. A nuclear 3′-5′ exonuclease involved in mRNA degradation interacts with poly(A) polymerase and the hnRNA protein Np13p. Mol. Cell. Biol. 20:604–616.
  • Carter, K. C., D. Bowman, W. Carrington, K. Fogarty, J. A. McNeil, F. S. Fay, and J. B. Lawrence. 1993. A three-dimensional view of precursor messenger RNA metabolism within the mammalian nucleus. Science 259:1330–1335.
  • Chang, D. D., and P. A. Sharp. 1989. Regulation by HIV Rev depends upon recognition of splice sites. Cell 59:789–795.
  • Chireux, M., J. F. Raynal, and M. J. Weber. 1994. Performance and limits of the mixed-phase assay for chloramphenicol acetyltransferase at low [3H]acetyl-CoA concentration. Anal. Biochem. 219:147–153.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
  • Cohen, J. B., S. D. Broz, and A. D. Levinson. 1993. U1 small nuclear RNAs with altered specificity can be stably expressed in mammalian cells and promote permanent changes in pre-mRNA splicing. Mol. Cell. Biol. 13:2666–2676.
  • Cole-Strauss, A., K. Yoon, Y. Xiang, B. C. Byrne, M. C. Rice, J. Gryn, W. K. Holloman, and E. B. Kmiec. 1996. Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science 273:1386–1389.
  • Cooke, C., H. Hans, and J. C. Alwine. 1999. Utilization of splicing elements and polyadenylation signal elements in the coupling of polyadenylation and last-intron removal. Mol. Cell. Biol. 19:4971–4979.
  • Dropulic, B., and K. T. Jeang. 1994. Gene therapy for human immunodeficiency virus infection: genetic antiviral strategies and targets for intervention. Hum. Gene Ther. 5:927–939.
  • Fiering, S., M. A. Bender, and M. Groudine. 1999. Analysis of mammalian cis-regulatory DNA elements by homologous recombination. Methods Enzymol. 306:42–66.
  • Furth, P. A., W. T. Choe, J. H. Rex, J. C. Byrne, and C. C. Baker. 1994. Sequences homologous to 5′ splice sites are required for the inhibitory activity of papillomavirus late 3′ untranslated regions. Mol. Cell. Biol. 14:5278–5289.
  • Genovese, C., and D. Rowe. 1987. Analysis of cytoplasmic and nuclear messenger RNA in fibroblasts from patients with type I osteogenesis imperfecta. Methods Enzymol. 145:223–235.
  • Gerstel, B., M. F. Tuite, and J. E. McCarthy. 1992. The effects of 5′-capping, 3′-polyadenylation and leader composition upon the translation and stability of mRNA in a cell-free extract derived from the yeast Saccharomyces cerevisiae. Mol. Microbiol. 6:2339–2348.
  • Giles, R. V., C. J. Ruddell, D. G. Spiller, J. A. Green, and D. M. Tidd. 1995. Single base discrimination for ribonuclease H-dependent antisense effects within intact human leukaemia cells. Nucleic Acids Res. 23:954–961.
  • Gorman, C. M., G. T. Merlino, M. C. Willingham, I. Pastan, and B. H. Howard. 1982. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc. Natl. Acad. Sci. USA 79:6777–6781.
  • Grimm, C., E. Lund, and J. E. Dahlberg. 1997. In vivo selection of RNAs that localize in the nucleus. EMBO J. 16:793–806.
  • Gunderson, S. I., K. Beyer, G. Martin, W. Keller, W. C. Boelens, and L. W. Mattaj. 1994. The human U1A snRNP protein regulates polyadenylation via a direct interaction with poly(A) polymerase. Cell 76:531–541.
  • Gunderson, S. I., M. Polycarpou-Schwarz, and I. W. Mattaj. 1998. U1 snRNP inhibits pre-mRNA polyadenylation through a direct interaction between U1 70K and poly(A) polymerase. Mol. Cell 1:255–264.
  • Gunderson, S. I., S. Vagner, M. Polycarpou-Schwarz, and I. W. Mattaj. 1997. Involvement of the carboxyl terminus of vertebrate poly(A) polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation. Genes Dev. 11:761–773.
  • Hamm, J., N. A. Dathan, D. Scherly, and I. W. Mattaj. 1990. Multiple domains of U1 snRNA, including U1 specific protein binding sites, are required for splicing. EMBO J. 9:1237–1244.
  • Herman, G. E., W. E. O'Brien, and A. L. Beaudet. 1986. An E. coli beta-galactosidase cassette suitable for study of eukaryotic expression. Nucleic Acids Res. 14:7130
  • Hitomi, Y., K. Sugiyama, and H. Esumi. 1998. Suppression of the 5′ splice site mutation in the Nagase analbuminemic rat with mutated U1snRNA. Biochem. Biophys. Res. Commun. 251:11–16.
  • Horowitz, D. S., and A. R. Krainer. 1994. Mechanisms for selecting 5′ splice sites in mammalian pre-mRNA splicing. Trends Genet. 10:100–106.
  • Huang, S., and D. L. Spector. 1992. U1 and U2 small nuclear RNAs are present in nuclear speckles. Proc. Natl. Acad. Sci. USA 89:305–308 (Erratum, 89:4218–4219.)
  • Huang, Y., and G. C. Carmichael. 1996. Role of polyadenylation in nucleocytoplasmic transport of mRNA. Mol. Cell. Biol. 16:1534–1542.
  • Huang, Y., and G. G. Carmichael. 1996. A suboptimal 5′ splice site is a cis-acting determinant of nuclear export of polyomavirus late mRNAs. Mol. Cell. Biol. 16:6046–6054.
  • Johnson, C., D. Primorac, M. McKinstry, J. McNeil, D. Rowe, and J. Lawrence. 2000. Tracking COL1A1 RNA in osteogenesis imperfecta: splice-defective transcripts initiate transport from the gene but are retained within the SC35 domain. J. Cell Biol. 150:417–431.
  • Klebba, C., O. G. Ottmann, M. Scherr, M. Pape, J. W. Engels, M. Grez, D. Hoelzer, and S. A. Klein. 2000. Retrovirally expressed anti-HIV ribozymes confer a selective survival advantage on CD4+ T cells in vitro. Gene Ther. 7:408–416.
  • Klein Gunnewiek, J. M., R. I. Hussein, Y. van Aarssen, D. Palacios, R. de Jong, W. J. van Venrooij, and S. I. Gunderson. 2000. Fourteen residues of the U1 snRNP-specific U1A protein are required for homodimerization, cooperative RNA binding, and inhibition of polyadenylation. Mol. Cell. Biol. 20:2209–2217.
  • Konforti, B. B., M. J. Koziolkiewicz, and M. M. Konarska. 1993. Disruption of base pairing between the 5′ splice site and the 5′ end of U1 snRNA is required for spliceosome assembly. Cell 75:863–873.
  • Koseki, S., T. Tanabe, K. Tani, S. Asano, T. Shioda, Y. Nagai, T. Shimada, J. Ohkawa, and K. Taira. 1999. Factors governing the activity in vivo of ribozymes transcribed by RNA polymerase III. J. Virol. 73:1868–1877.
  • Kren, B. T., R. Metz, R. Kumar, and C. J. Steer. 1999. Gene repair using chimeric RNA/DNA oligonucleotides. Semin. Liver Dis. 19:93–104.
  • Kumar, M., and G. G. Carmichael. 1998. Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol. Mol. Biol. Rev. 62:1415–1434.
  • Kunkel, T. A., K. Bebenek, and J. McClary. 1991. Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol. 204:125–139.
  • Kuwabara, T., M. Warashina, M. Orita, S. Koseki, J. Ohkawa, and K. Taira. 1998. Formation of a catalytically active dimer by tRNA(Val)-driven short ribozymes. Nat. Biotechnol. 16:961–965.
  • Laptev, A. V., Z. Lu, A. Colige, and D. J. Prockop. 1994. Specific inhibition of expression of a human collagen gene (COL1A1) with modified antisense oligonucleotides. The most effective target sites are clustered in double-stranded regions of the predicted secondary structure for the mRNA. Biochemistry 33:11033–11039.
  • Lear, A. L., L. P. Eperon, I. M. Wheatley, and I. C. Eperon. 1990. Hierarchy for 5′ splice site preference determined in vivo. J. Mol. Biol. 211:103–115.
  • Lee, N. S., E. Bertrand, and J. Rossi. 1999. mRNA localization signals can enhance the intracellular effectiveness of hammerhead ribozymes. RNA 5:1200–1209.
  • Lichtler, A., N. L. Barrett, and G. G. Carmichael. 1992. Simple, inexpensive preparation of T1/T2 ribonuclease suitable for use in RNase protection experiments. BioTechniques 12:231–232.
  • Ludwig, J., M. Blaschke, and B. S. Sproat. 1998. Extending the cleavage rules for the hammerhead ribozyme: mutating adenosine 15.1 to inosine 15.1 changes the cleavage site specificity from N16.2U16.1H17 to N16.2C16.1H17. Nucleic Acids Res. 26:2279–2285.
  • Lund, E.. 1988. Heterogeneity of human U1 snRNAs. Nucleic Acids Res. 16:5813–5826.
  • Lund, E., and J. E. Dahlberg. 1984. True genes for human U1 small nuclear RNA. Copy number, polymorphism, and methylation. J. Biol. Chem. 259:2013–2021.
  • Lutz, C. S., and J. C. Alwine. 1994. Direct interaction of the U1 snRNP-A protein with the upstream efficiency element of the SV40 late polyadenylation signal. Genes Dev. 8:576–586.
  • Lutz, C. S., K. G. Murthy, N. Schek, J. P. O'Connor, J. L. Manley, and J. C. Alwine. 1996. Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage-polyadenylation specificity factor increases polyadenylation efficiency in vitro. Genes Dev. 10:325–337.
  • Matera, A. G., and D. C. Ward. 1993. Nucleoplasmic organization of small nuclear ribonucleoproteins in cultured human cells. J. Cell Biol. 121:715–727.
  • Medina, M. F., and S. Joshi. 1999. Design, characterization and testing of tRNA3Lys-based hammerhead ribozymes. Nucleic Acids Res. 27:1698–1708.
  • Michienzi, A., L. Conti, B. Varano, S. Prislei, S. Gessani, and I. Bozzoni. 1998. Inhibition of human immunodeficiency virus type 1 replication by nuclear chimeric anti-HIV ribozymes in a human T lymphoblastoid cell line. Hum. Gene Ther. 9:621–628.
  • Michienzi, A., S. Prislei, and I. Bozzoni. 1996. U1 small nuclear RNA chimeric ribozymes with substrate specificity for the Rev pre-mRNA of human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 93:7219–7224.
  • Montgomery, R. A., and H. C. Dietz. 1997. Inhibition of fibrillin 1 expression using U1 snRNA as a vehicle for the presentation of antisense targeting sequence. Hum. Mol. Genet. 6:519–525.
  • Mount, S. M., I. Pettersson, M. Hinterberger, A. Karmas, and J. A. Steitz. 1983. The U1 small nuclear RNA-protein complex selectively binds a 5′ splice site in vitro. Cell 33:509–518.
  • Muller, U.. 1999. Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech. Dev. 82:3–21.
  • Murphy, J. T., R. R. Burgess, J. E. Dahlberg, and E. Lund. 1982. Transcription of a gene for human U1 small nuclear RNA. Cell 29:265–274.
  • Najera, I., M. Krieg, and J. Karn. 1999. Synergistic stimulation of HIV-1 rev-dependent export of unspliced mRNA to the cytoplasm by hnRNP A1. J. Mol. Biol. 285:1951–1964.
  • Norton, P. A., and J. M. Coffin. 1985. Bacterial beta-galactosidase as a marker of Rous sarcoma virus gene expression and replication. Mol. Cell. Biol. 5:281–290.
  • O'Connor, J. P., J. C. Alwine, and C. S. Lutz. 1997. Identification of a novel, non-snRNP protein complex containing U1A protein. RNA 3:1444–1455.
  • Ohkawa, J., and K. Taira. 2000. Control of the functional activity of an antisense RNA by a tetracycline-responsive derivative of the human U6 snRNA promoter. Hum. Gene Ther. 11:577–585.
  • Pfarr, D. S., L. A. Rieser, R. P. Woychik, F. M. Rottman, M. Rosenberg, and M. E. Reff. 1986. Differential effects of polyadenylation regions on gene expression in mammalian cells. DNA 5:115–122.
  • Purschke, W. G., and P. K. Muller. 1994. An improved fluor diffusion assay for chloramphenicol acetyltransferase gene expression. BioTechniques 16:264–265, 268–269.
  • Redford-Badwal, D. A., M. L. Stover, M. Valli, M. B. McKinstry, and D. W. Rowe. 1996. Nuclear retention of COL1A1 messenger RNA identifies null alleles causing mild osteogenesis imperfecta. J. Clin. Invest. 97:1035–1040.
  • Robberson, B. L., G. J. Cote, and S. M. Berget. 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10:84–94.
  • Robertson, M. P., and A. D. Ellington. 1999. In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat. Biotechnol. 17:62–66.
  • Rosbash, M., and B. Seraphin. 1991. Who's on first? The U1 snRNP-5′ splice site interaction and splicing. Trends Biochem. Sci. 16:187–190.
  • Rossi, F., T. Forne, E. Antoine, J. Tazi, C. Brunel, and G. Cathala. 1996. Involvement of U1 small nuclear ribonucleoproteins (snRNP) in 5′ splice site-U1 snRNP interaction. J. Biol. Chem. 271:23985–23991.
  • Selden, R. F.. 1990. Introduction of DNA into mammalian cells. Current protocols in molecular biology. R. B. Frederick, M. Ausubel, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1:9.1.1–9.1.9. Greene Publishing Associates and Wiley-Interscience, New York, N.Y
  • Smith, K. P., P. T. Moen, K. L. Wydner, J. R. Coleman, and J. B. Lawrence. 1999. Processing of endogenous pre-mRNAs in association with SC-35 domains is gene specific. J. Cell Biol. 144:617–629.
  • Stein, C. A.. 1999. Two problems in antisense biotechnology: in vitro delivery and the design of antisense experiments. Biochim. Biophys. Acta 1489:45–52.
  • Stover, M. L., D. Primorac, S. C. Liu, M. B. McKinstry, and D. W. Rowe. 1993. Defective splicing of mRNA from one COL1A1 allele of type I collagen in nondeforming (type I) osteogenesis imperfecta. J. Clin. Investig. 92:1994–2002.
  • Suter, D., R. Tomasini, U. Reber, L. Gorman, R. Kole, and D. Schumperli. 1999. Double-target antisense U7 snRNAs promote efficient skipping of an aberrant exon in three human beta-thalassemic mutations. Hum. Mol. Genet. 8:2415–2423.
  • Tuschl, T., M. M. Ng, W. Pieken, F. Benseler, and F. Eckstein. 1993. Importance of exocyclic base functional groups of central core guanosines for hammerhead ribozyme activity. Biochemistry 32:11658–11668 (Erratum, 33:848, 1994.)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.