20
Views
29
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Insert Region of Rac1 Is Essential for Membrane Ruffling but Not Cellular Transformation

, &
Pages 2847-2857 | Received 23 Jan 2001, Accepted 26 Jan 2001, Published online: 28 Mar 2023

REFERENCES

  • Abo, A., E. Pick, A. Hall, N. Totty, C. G. Teahan, and A. W. Segal. 1991. Activation of the NADPH oxidase involves the small GTP-binding protein p21racl. Nature 353:668–670.
  • Albanese, C., J. Johnson, G. Watanabe, N. Eklund, D. Vu, A. Arnold, and R. G. Pestell. 1995. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem. 270:23589–23597.
  • Bishop, A. L., and A. Hall. 2000. Rho GTPases and their effector proteins. Biochem. J. 348:241–255.
  • Bonizzi, G., J. Piette, S. Schoonbroodt, R. Greimers, L. Havard, M. P. Merville, and V. Bours. 1999. Reactive oxygen intermediate-dependent NF-kappaB activation by interleukin-1beta requires 5-lipoxygenase or NADPH oxidase activity. Mol. Cell. Biol. 19:1950–1960.
  • Clark, G. J., A. D. Cox, S. M. Graham, and C. J. Der. 1995. Biological assays for Ras transformation. Methods Enzymol. 255:395–412.
  • Clarke, N., N. Arenzana, T. Hai, A. Minden, and R. Prywes. 1998. Epidermal growth factor induction of the c-jun promoter by a Rac pathway. Mol. Cell. Biol. 18:1065–1073.
  • Cool, R. H., E. Merten, C. Theiss, and H. Acker. 1998. Rac1, but not Rac2, is involved in the regulation of the intracellular hydrogen peroxide level in HepG2 cells. Biochem. J. 332:5–8.
  • Coso, O. A., M. Chiariello, J. C. Yu, H. Teramoto, P. Crespo, N. Xu, T. Miki, and J. S. Gutkind. 1995. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81:1137–1146.
  • del Peso, L., R. Hernández-Alcoceba, N. Embade, A. Carnero, P. Esteve, C. Paje, and J. C. Lacal. 1998. Rho proteins induce metastatic properties in vivo. Oncogene 15:3047–3057.
  • Diekmann, D., A. Abo, C. Johnston, A. W. Segal, and A. Hall. 1994. Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265:531–533.
  • Diekmann, D., C. D. Nobes, P. D. Burbelo, A. Abo, and A. Hall. 1995. Rac GTPase interacts with GAPs and target proteins through multiple effector sites. EMBO J. 14:5338–5349.
  • Feltham, J. L., V. Dotsch, S. Raza, D. Manor, R. A. Cerione, M. J. Sutcliffe, G. Wagner, and R. E. Oswald. 1997. Definition of the switch surface in the solution structure of Cdc42Hs. Biochemistry 36:8755–8766.
  • Freeman, J. L., A. Abo, and J. D. Lambeth. 1996. Rac “insert region” is a novel effector region that is implicated in the activation of NADPH oxidase, but not PAK65. J. Biol. Chem. 271:19794–19801.
  • Fujisawa, J. L., P. Madaule, T. Ishizaki, G. Watanabe, H. Bito, Y. Saito, A. Hall, and S. Narumiya. 1998. Different regions of Rho determine Rho-selective binding of different classes of Rho target molecules. J. Biol. Chem. 273:18943–18949.
  • Geiszt, M., J. B. Kopp, P. Varnai, and T. L. Leto. 2000. Identification of renox, an NAD(P)H oxidase in kidney. Proc. Natl. Acad. Sci. USA 97:8010–8014.
  • Gili, J., and E. Pick. 1995. “Peptide walking” is a novel method for mapping functional domains in proteins. J. Biol. Chem. 270:29079–29082.
  • Gjoerup, O., J. Lukas, J. Bartek, and B. M. Willumsen. 1998. Rac and Cdc42 are potent stimulators of E2F-dependent transcription capable of promoting retinoblastoma susceptibility gene product hyperphosphorylation. J. Biol. Chem. 273:18812–18818.
  • Hall, A.. 1998. Rho GTPases and the actin cytoskeleton. Science 279:509–514.
  • Hill, C. S., J. Wynne, and R. Treisman. 1995. The Rho family GTPases RhoA, Rac1 and Cdc42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170.
  • Hirshberg, M., R. W. Stockley, G. Dodson, and M. R. Webb. 1997. The crystal structure of human rac1, a member of the rho-family complexed with a GTP analogue. Nat. Struct. Biol. 4:147–152.
  • Hsiao, K.-M., S. L. McMahon, and P. J. Farnham. 1994. Multiple DNA elements are required for the growth regulation of the mouse E2F1 promoter. Genes Dev. 8:1526–1537.
  • Ihara, K., S. Muraguchi, M. Kato, T. Shimizu, M. Shirakawa, S. Kuroda, K. Kaibuchi, and T. Hakoshima. 1998. Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J. Biol. Chem. 273:9656–9666.
  • Irani, K., Y. Xia, J. L. Zweier, S. J. Sollott, C. J. Der, E. R. Fearon, M. Sundaresan, T. Finkel, and P. J. Goldschmidt-Clermont. 1997. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275:1649–1652.
  • Joneson, T., and D. Bar-Sagi. 1998. A Rac1 effector site controlling mitogenesis through superoxide production. J. Biol. Chem. 273:17991–17994.
  • Joneson, T., and D. Bar-Sagi. 1999. Suppression of Ras-induced apoptosis by the Rac GTPase. Mol. Cell. Biol. 19:5892–5901.
  • Kawasaki, T., K. Henmi, E. Ono, S. Hatakeyama, M. Iwano, H. Satoh, and K. Shimamoto. 1999. The small GTP-binding protein rac is a regulator of cell death in plants. Proc. Natl. Acad. Sci. USA 96:10922–10926.
  • Keely, P. J., J. K. Westwick, I. P. Whitehead, C. J. Der, and L. V. Parise. 1997. Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 390:632–636.
  • Kheradmand, F., E. Werner, P. Tremble, M. Symons, and Z. Werb. 1998. Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science 280:898–902.
  • Khosravi-Far, R., P. A. Solski, G. J. Clark, M. S. Kinch, and C. J. Der. 1995. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15:6443–6453.
  • Khosravi-Far, R., M. A. White, J. K. Westwick, P. A. Solski, M. Chrzanowska-Wodnicka, L. Van Aelst, M. H. Wigler, and C. J. Der. 1996. Oncogenic Ras activation of Raf/MAP kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol. Cell. Biol. 16:3923–3933.
  • Kwong, C. H., A. G. Adams, and T. L. Leto. 1995. Characterization of the effector-specifying domain of Ras involved in NADPH oxidase activation. J. Biol. Chem. 270:19868–19872.
  • Kwong, C. H., H. L. Malech, D. Rotrosen, and T. L. Leto. 1993. Regulation of the human neutrophil NADPH oxidase by rho-related G-proteins. Biochemistry 32:5711–5717.
  • Lee, A. C., B. E. Fenster, H. Ito, K. Takeda, N. S. Bae, T. Hirai, Z. X. Yu, V. J. Ferrans, B. H. Howard, and T. Finkel. 1999. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 274:7936–7940.
  • Li, R., B. Debreceni, B. Jia, Y. Gao, G. Tigyi, and Y. Zheng. 1999. Localization of the PAK1-, WASP-, and IQGAP1-specifying regions of Cdc42. J. Biol. Chem. 274:29648–29654.
  • Loh, A. P., W. Guo, L. K. Nicholson, and R. E. Oswald. 1999. Backbone dynamics of inactive, active, and effector-bound Cdc42Hs from measurements of (15)N relaxation parameters at multiple field strengths. Biochemistry 38:12547–12557.
  • Michiels, F., G. G. Habets, J. C. Stam, R. A. van der Kammen, and J. G. Collard. 1995. A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 375:338–340.
  • Minden, A., A. Lin, F.-X. Claret, A. Abo, and M. Karin. 1995. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81:1147–1157.
  • Missy, K., P. Van, V. P. Raynal, C. Viala, G. Mauco, M. Plantavid, H. Chap, and B. Payrastre. 1998. Lipid products of phosphoinositide 3-kinase interact with Rac1 GTPase and stimulate GDP dissociation. J. Biol. Chem. 273:30279–30286.
  • Montaner, S., R. Perona, L. Saniger, and J. C. Lacal. 1998. Multiple signalling pathways lead to the activation of the nuclear factor kappaB by the Rho family of GTPases. J. Biol. Chem. 273:12779–12785.
  • Moorman, J. P., D. Luu, J. Wickham, D. A. Bobak, and C. S. Hahn. 1999. A balance of signaling by Rho family small GTPases RhoA, Rac1 and Cdc42 coordinates cytoskeletal morphology but not cell survival. Oncogene 18:47–57.
  • Nisimoto, Y., J. L. R. Freeman, S. A. Motalebi, M. Hirshberg, and J. D. Lambeth. 1997. Rac binding to p67phox. J. Biol. Chem. 272:18834–18841.
  • Ohba, M., M. Shibanuma, T. Kuroki, and K. Nose. 1994. Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J. Cell Biol. 126:1079–1088.
  • Olson, M. F., A. Ashworth, and A. Hall. 1995. An essential role for Rho, Rac and Cdc42 GTPases in cell cycle progression through G1. Science 269:1270–1272.
  • Perona, R., S. Montaner, L. Saniger, I. Sánchez-Pérez, R. Bravo, and J. C. Lacal. 1997. Activation of the nuclear factor-KB by Rho, CDC42, and Rac-1 proteins. Genes Dev. 11:463–475.
  • Prigmore, E., S. Ahmed, A. Best, R. Kozma, E. Manser, A. W. Segal, and L. Lim. 1995. A 68-kDa kinase and NADPH oxidase component p67phox are targets for Cdc42Hs and Rac1 in neutrophils. J. Biol. Chem. 270:10717–10722.
  • Qiu, R.-G., J. Chen, D. Kirn, F. McCormick, and M. Symons. 1995. An essential role for Rac in Ras transformation. Nature 374:457–459.
  • Qiu, R.-G., A. Abo, and M. G. Steven. 2000. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation. Curr. Biol. 10:697–707.
  • Ridley, A. J., H. F. Paterson, C. L. Johnston, D. Diekmann, and A. Hall. 1992. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410.
  • Sahai, E., A. S. Alberts, and R. Treisman. 1998. RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO J. 17:1350–1361.
  • Schwartz, M. A., J. E. Meredith, and W. B. Kiosses. 1998. An activated Rac mutant functions as a dominant negative for membrane ruffling. Oncogene 17:625–629.
  • Self, A. J., H. F. Paterson, and A. Hall. 1993. Different structural organization of Ras and Rho effector domains. Oncogene 8:655–661.
  • Serrano, M., A. W. Lin, M. E. McCurrach, D. Beach, and S. W. Lowe. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602.
  • Shin, E. A., K. H. Kim, S. I. Han, K. S. Ha, J. H. Kim, K. I. Kang, H. D. Kim, and H. S. Kang. 1999. Arachidonic acid induces the activation of the stress-activated protein kinase, membrane ruffling and H2O2 production via a small GTPase Rac1. FEBS Lett. 452:355–359.
  • Sotiropoulos, A., D. Gineitis, J. Copeland, and R Treisman. 1999. Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98:159–169.
  • Suh, Y. A., R. S. Arnold, B. Lassegue, J. Shi, X. Xu, D. Sorescu, A. B. Chung, K. K. Griendling, and J. D. Lambeth. 1999. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401:79–82.
  • Sulciner, D. J., K. Irani, Z.-X. Yu, V. J. Ferrans, P. Goldschmidt-Clermont, and T. Finkel. 1996. Rac1 regulates a cytokine-stimulated, redox-dependent pathway necessary for NF-κB activation. Mol. Cell. Biol. 16:7115–7121.
  • Sundaresan, M., Z. X. Yu, V. J. Ferrans, K. Irani, and T. Finkel. 1995. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299.
  • Sundaresan, M., Z. X. Yu, V. J. Ferrans, D. J. Sulciner, J. S. Gutkind, K. Irani, P. J. Goldschmidt-Clermont, and T. Finkel. 1996. Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. Biochem. J. 318:379–382.
  • Toporik, A., Y. Gorzalczany, M. Hirshberg, E. Pick, and O. Lotan. 1998. Mutational analysis of novel effector domains in Rac1 involved in the activation of nicotinamide adenine dinucleotide phosphate (reduced) oxidase. Biochemistry 37:7147–7156.
  • Valencia, A., P. Chardin, A. Wittinghofer, and C. Sander. 1991. The ras protein family: evolutionary tree and role of conserved amino acids. Biochemistry 30:4637–4648.
  • Van Aelst, L., and C. D'Souza-Schorey. 1997. Rho GTPases and signaling networks. Genes Dev. 11:2295–2322.
  • Westwick, J. K., Q. T. Lambert, G. J. Clark, M. Symons, L. Van Aelst, R. G. Pestell, and C. J. Der. 1997. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol. 17:1324–1335.
  • Wu, J. W., D. A. Leonard, A. Cerione, and D. Manor. 1997. Interaction between Cdc42Hs and RhoGDI is mediated through the Rho insert region. J. Biol. Chem. 272:26153–26158.
  • Wu, J. W., R. Lin, A. Cerione, and D. Manor. 1998. Transformation activity of Cdc42 requires a region unique to Rho-related proteins. J. Biol. Chem. 273:16655–16658.
  • Zohar, M., H. Teramoto, B. Z. Katz, K. M. Yamada, and J. S. Gutkind. 1998. Effector domain mutants of Rho dissociate cytoskeletal changes from nuclear signaling and cellular transformation. Oncogene 17:991–998.
  • Zohn, I. M., S. L. Campbell, R. Khosravi-Far, K. L. Rossman, and C. J. Der. 1998. Rho family proteins and Ras transformation: the RHOad less traveled gets congested. Oncogene 17:1415–1438.
  • Zong, H., N. Raman, L. A. Mickelson-Young, S. J. Atkinson, and L. A. Quilliam. 1999. Loop 6 of RhoA confers specificity for effector binding, stress fiber formation, and cellular transformation. J. Biol. Chem. 274:4551–4560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.