24
Views
32
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Protection from Free β-Tubulin by the β-Tubulin Binding Protein Rbl2p

, , &
Pages 138-147 | Received 14 Jun 2001, Accepted 03 Oct 2001, Published online: 27 Mar 2023

REFERENCES

  • Alani, E., L. Cao, and N. Kleckner. 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116: 541–545.
  • Alvarez, P., A. Smith, J. Fleming, and F. Solomon. 1998. Modulation of tubulin polypeptide ratios by the yeast protein Pac10p. Genetics 149: 857–864.
  • Archer, J. E. 1996. PhD. thesis. Massachusetts Institute of Technology, Cambridge.
  • Archer, J. E., L. R. Vega, M. Magendantz, and F. Solomon. 1998. Formation and function of the Rbl2p–β-tubulin complex. Mol. Cell. Biol. 18: 1757–1762.
  • Archer, J. E., L. R. Vega, and F. Solomon. 1995. Rbl2p, a yeast protein that binds to β-tubulin and participates in microtubule function in vivo. Cell 82: 425–434.
  • Bitoun, R., and A. Zamir. 1986. Spontaneous amplification of yeast CEN ARS plasmids. Mol. Gen. Genet. 204: 98–102.
  • Burke, D., P. Gasdaska, and L. Hartwell. 1989. Dominant effects of tubulin overexpression in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 1049–1059.
  • Cassimeris, L. 1999. Accessory protein regulation of microtubule dynamics throughout the cell cycle. Curr. Opin. Cell Biol. 11: 134–141.
  • Cleveland, D. W. 1990. Microtubule MAPping. Cell 60: 701–702.
  • Desai, A. 1997. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13: 83–117.
  • Feierbach, B., E. Nogales, K. Downing, and T. Stearns. 1999. Alf1p, a CLIP-170 domain containing protein, is functionally and physically associated with α-tubulin. J. Cell Biol. 144: 113–124.
  • Fleming, J. A., L. R. Vega, and F. Solomon. 2000. Function of tubulin binding proteins in vivo. Genetics 156: 69–80.
  • Futcher, B., and J. Carbon. 1986. Toxic effects of excess cloned centromeres. Mol. Cell. Biol. 6: 2213–2222.
  • Gao, Y., I. Vainberg, R. Chow, and N. Cowan. 1993. Two cofactors and cytoplasmic chaperonin are required for the folding of α- and β-tubulin. Mol. Cell. Biol. 13: 2478–2485.
  • Geiser, J. R., E. J. Schott, T. J. Kingsbury, N. B. Cole, L. J. Totis, G. Bhattacharyya, L. He, and M. A. Hoyt. 1997. Saccharomyces cerevisiae genes required in the absence of the CIN8-encoded spindle motor act in functionally diverse mitotic pathways. Mol. Biol. Cell 8: 1035–1050.
  • Geissler, S., K. Siegers, and E. Schiebel. 1998. A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J. 17: 952–966.
  • Guthrie, C., and G. Fink. 1991. Guide to yeast genetics and molecular biology, vol. 194. Academic Press, Inc., New York, N.Y.
  • Hoyt, M., T. Stearns, and D. Botstein. 1990. Chromosome instability mutants of Saccharomyces cerevisiae that are defective in microtubule-mediated processes. Mol. Cell. Biol. 10: 223–234.
  • Hoyt, M. A., J. P. Macke, B. T. Roberts, and J. R. Geiser. 1997. Saccharomyces cerevisiae PAC2 functions with CIN1, 2 and 4 in a pathway leading to normal microtubule stability. Genetics 146: 849–857.
  • Liu, H., J. Krizek, and A. Bretscher. 1992. Construction of a GAL1-regulated yeast cDNA expression library and its application to the identification of genes whose overexpression causes lethality in yeast. Genetics 132: 665–673.
  • Melki, R., H. Rommelaere, R. Leguy, J. Vandekerckhove, and C. Ampe. 1996. Cofactor A is a molecular chaperone required for beta-tubulin folding: functional and structural characterization. Biochemistry 35: 10422–10435.
  • Mumberg, D., R. Muller, and M. Funk. 1994. Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 22: 5767–5768.
  • Schatz, P. J., L. Pillus, F. Grisafi, F. Solomon, and D. Botstein. 1986. Two functional α-tubulin genes of the yeast Saccharomyces cerevisiae encode divergent proteins. Mol. Cell. Biol. 6: 3711–3721.
  • Schatz, P., F. Solomon, and D. Botstein. 1988. Isolation and characterization of conditional-lethal mutation in the TUB1 alpha-tubulin gene of the yeast Saccharomyces cerevisiae. Genetics 120: 681–695.
  • Schatz, P. J., F. Solomon, and D. Botstein. 1986. Genetically essential and nonessential α-tubulin genes specify functionally interchangeable proteins. Mol. Cell. Biol. 6: 3722–3733.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • Solomon, F., L. Connell, D. Kirkpatrick, V. Praitis, and B. Weinstein. 1992. Methods for studying the yeast cytoskeleton. Oxford University Press, Oxford, England.
  • Stearns, T., M. Hoyt, and D. Botstein. 1990. Yeast mutants sensitive to antimicrotubule drugs define three genes that affect microtubule function. Genetics 124: 251–262.
  • Steinbacher. 1999. Crystal structure of the post-chaperonin beta-tubulin binding cofactor Rbl2p. Nat. Struct. Biol. 6: 1029–1032.
  • Tian, G., Y. Huang, H. Rommelaere, J. Vandekerckhove, C. Ampe, and N. Cowan. 1996. Pathway leading to correctly folded β-tubulin. Cell 86: 287–296.
  • Tian, G., S. Lewis, B. Feierbach, T. Stearns, H. Rommelaere, C. Ampe, and N. Cowan. 1997. Tubulin subunits exist in an activated conformational state generated and maintained by protein cofactors. J. Cell Biol. 138: 821–832.
  • Vainberg, I., S. Lewis, H. Rommelaere, C. Ampe, J. Vandekerckhove, H. Klein, and N. Cowan. 1998. Prefoldin, a chaperone that delivers unfolded proteins to the cytosolic chaperonin. Cell 93: 863–873.
  • Vega, L. R., J. Fleming, and F. Solomon. 1998. An alpha-tubulin mutant destabilizes the heterodimer: phenotypic consequences and interactions with tubulin-binding proteins. Mol. Biol. Cell 9: 2349–2360.
  • Wach, A., A. Brachat, C. Alberti-Segui, C. Rebischung, and P. Philippsen. 1997. Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in S. cerevisiae. Yeast 13: 1065–1075.
  • Weinstein, B., and F. Solomon. 1990. Phenotypic consequences of tubulin overproduction in Saccharomyces cerevisiae: differences between alpha-tubulin and beta-tubulin. Mol. Cell. Biol. 10: 5295–5304.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.