26
Views
77
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Tyrosine Phosphorylation Regulates Alpha II Spectrin Cleavage by Calpain

, , , , , , , , , & show all
Pages 3527-3536 | Received 26 Nov 2001, Accepted 01 Feb 2002, Published online: 27 Mar 2023

REFERENCES

  • Akiyama, T., T. Kadowaki, E. Nishida, T. Kadooka, H. Ogawara, Y. Fukami, H. Sakai, F. Takaku, and M. Kasuga. 1986. Substrate specificities of tyrosine-specific protein kinases toward cytoskeletal proteins in vitro. J. Biol. Chem. 261: 14797–14803.
  • Balasubramanian, S., and R. L. Huganir. 1999. Characterization of phosphotyrosine containing proteins at the cholinergic synapse. FEBS Lett. 446: 95–102.
  • Beck, K. A., J. A. Buchanan, and W. J. Nelson. 1997. Golgi membrane skeleton: identification, localization and oligomerization of a 195 kDa ankyrin isoform associated with the Golgi complex. J. Cell Sci. 110: 1239–1249.
  • Bennett, V., and A. J. Baines. 2001. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev. 81: 1353–1392.
  • Berghs, S., D. Aggujaro, R. Dirkx, Jr., E. Maksimova, P. Stabach, J. M. Hermel, J. P. Zhang, W. Philbrick, V. Slepnev, T. Ort, and M. Solimena. 2000. BetaIV spectrin, a new spectrin localized at axon initial segments and nodes of ranvier in the central and peripheral nervous system. J. Cell Biol. 151: 985–1002.
  • Bi, R., X. Bi, and M. Baudry. 1998. Phosphorylation regulates calpain-mediated truncation of glutamate ionotropic receptors. Brain Res. 797: 154–158.
  • Bloch, R. J., and J. S. Morrow. 1989. An unusual beta-spectrin associated with clustered acetylcholine receptors. J. Cell Biol. 108: 481–493.
  • Blot-Chabaud, M., M. Laplace, F. Cluzeaud, C. Capurro, R. Cassingena, A. Vandewalle, N. Farman, and J. P. Bonvalet. 1996. Characteristics of a rat cortical collecting duct cell line that maintains high transepithelial resistance. Kidney Int. 50: 367–376.
  • Bretscher, A. 1989. Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. J. Cell Biol. 108: 921–930.
  • Bryson, G. L., H. Massa, B. J. Trask, and R. L. Van Etten. 1995. Gene structure, sequence, and chromosomal localization of the human red cell-type low-molecular-weight acid phosphotyrosyl phosphatase gene, ACP1. Genomics 30: 133–140.
  • Chang, E. C., M. Barr, Y. Wang, V. Jung, H. P. Xu, and M. H. Wigler. 1994. Cooperative interaction of S. pombe proteins required for mating and morphogenesis. Cell 79: 131–141.
  • Chomczynski, P. A., and N. Sacchi. 1991. Single-step isolation from cultured cells or tissue, p. 4.2.1–4.2.2. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. A. Smith, J. G. Seidman, and K. Struhl (ed.), Current protocols in molecular biology. John Wiley & Sons, New York, N.Y.
  • Cirri, P., T. Fiaschi, P. Chiarugi, G. Camici, G. Manao, G. Raugei, and G. Ramponi. 1996. The molecular basis of the differing kinetic behavior of the two low molecular mass phosphotyrosine protein phosphatase isoforms. J. Biol. Chem. 271: 2604–2607.
  • Cirri, P., P. Chiarugi, L. Taddei, G. Raugei, G. Camici, G. Manao, and G. Ramponi. 1998. Low molecular weight protein-tyrosine phosphatase tyrosine phosphorylation by c-Src during platelet-derived growth factor-induced mitogenesis correlates with its subcellular targeting. J. Biol. Chem. 273: 32522–32527.
  • Clark, S. G., M. J. Stern, and H. R. Horvitz. 1992. C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356: 340–344.
  • De Matteis, M. A., and J. S. Morrow. 1998. The role of ankyrin and spectrin in membrane transport and domain formation. Curr. Opin. Cell Biol. 10: 542–549.
  • Dubreuil, R. R., P. Wang, S. Dahl, J. Lee, and L. S. Goldstein. 2000. Drosophila beta spectrin functions independently of alpha spectrin to polarize the Na,K ATPase in epithelial cells. J. Cell Biol. 149: 647–656.
  • Erpel, T., G. Superti-Furga, and S. A. Courtneidge. 1995. Mutational analysis of the Src SH3 domain: the same residues of the ligand binding surface are important for intra- and intermolecular interaction. EMBO J. 14: 963–975.
  • Fowler, V. M., and E. J. Adam. 1992. Spectrin redistributes to the cytosol and is phosphorylated during mitosis in cultured cells. J. Cell Biol. 119: 1559–1572.
  • Fox, J. E., L. Lipfert, E. A. Clark, C. C. Reynolds, C. D. Austin, and J. S. Brugge. 1993. On the role of the platelet membrane skeleton in mediating signal transduction. Association of GP IIb-IIIa, pp60c-src, pp62c-yes, and the p21ras GTPase-activating protein with the membrane skeleton. J. Biol. Chem. 268: 25973–25984.
  • Gascard, P., and N. Mohandas. 2000. New insights into functions of erythroid proteins in nonerythroid cells. Curr. Opin. Hematol. 7: 123–129.
  • Hammarlund, M., W. S. Davis, and E. M. Jorgensen. 2000. Mutations in beta-spectrin disrupt axon outgrowth and sarcomere structure. J. Cell Biol. 149: 931–942.
  • Harris, A. S., and J. S. Morrow. 1988. Proteolytic processing of human brain alpha spectrin (fodrin): identification of a hypersensitive site. J. Neurosci. 8: 2640–2651.
  • Harris, H. W., Jr., and S. E. Lux. 1980. Structural characterization of the phosphorylation sites of human erythrocyte spectrin. J. Biol. Chem. 255: 11512–11520.
  • Hu, R. J., and V. Bennett. 1991. In vitro proteolysis of brain spectrin by calpain I inhibits association of spectrin with ankyrin-independent membrane binding site(s). J. Biol. Chem. 266: 18200–18205.
  • Huang, C., N. N. Tandon, N. J. Greco, Y. Ni, T. Wang, and X. Zhan. 1997. Proteolysis of platelet cortactin by calpain. J. Biol. Chem. 272: 19248–19252.
  • Kamal, A., Y. Ying, and R. G. Anderson. 1998. Annexin VI-mediated loss of spectrin during coated pit budding is coupled to delivery of LDL to lysosomes. J. Cell Biol. 142: 937–947.
  • Kang, H., C. Freund, J. S. Duke-Cohan, A. Musacchio, G. Wagner, and C. E. Rudd. 2000. SH3 domain recognition of a proline-independent tyrosine-based RKxxYxxY motif in immune cell adaptor SKAP55. EMBO J. 19: 2889–2899.
  • Liu, F., M. A. Sells, and J. Chernoff. 1998. Protein tyrosine phosphatase 1B negatively regulates integrin signaling. Curr. Biol. 8: 173–176.
  • Manno, S., Y. Takakuwa, K. Nagao, and N. Mohandas. 1995. Modulation of erythrocyte membrane mechanical function by beta-spectrin phosphorylation and dephosphorylation. J. Biol. Chem. 270: 5659–5665.
  • McMahon, L. W., C. E. Walsh, and M. W. Lambert. 1999. Human alpha spectrin II and the Fanconi anemia proteins FANCA and FANCC interact to form a nuclear complex. J. Biol. Chem. 274: 32904–32908.
  • Mongiovi, A. M., P. R. Romano, S. Panni, M. Mendoza, W. T. Wong, A. Musacchio, G. Cesareni, and P. P. Di Fiore. 1999. A novel peptide-SH3 interaction. EMBO J. 18: 5300–5309.
  • Moorthy, S., L. Chen, and V. Bennett. 2000. Caenorhabditis elegans beta-G spectrin is dispensable for establishment of epithelial polarity, but essential for muscular and neuronal function. J. Cell Biol. 149: 915–930.
  • Nicolas, G., S. Pedroni, C. Fournier, H. Gautero, and M. C. Lecomte. 1997. Method of site-directed mutagenesis using long primer-unique site elimination and exonuclease III. BioTechniques 22: 430–434.
  • Parkinson, N. J., C. L. Olsson, J. L. Hallows, J. McKee-Johnson, B. P. Keogh, K. Noben-Trauth, S. G. Kujawa, and B. L. Tempel. 2001. Mutant beta-spectrin 4 causes auditory and motor neuropathies in quivering mice. Nat. Genet. 29: 61–65.
  • Pedroni, S., M. C. Lecomte, H. Gautero, and D. Dhermy. 1993. Heterogeneous phosphorylation of erythrocyte spectrin beta chain in intact cells. Biochem. J. 294(Pt. 3): 841–846.
  • Rozakis-Adcock, M., R. Fernley, J. Wade, T. Pawson, and D. Bowtell. 1993. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363: 83–85.
  • Sihag, R. K., T. B. Shea, and F. S. Wang. 1996. Spectrin-actin interaction is required for neurite extension in NB 2a/dl neuroblastoma cells. J. Neurosci. Res. 44: 430–437.
  • Sihag, R. K. 1998. Brain beta-spectrin phosphorylation: phosphate analysis and identification of threonine-347 as a heparin-sensitive protein kinase phosphorylation site. J. Neurochem. 71: 2220–2228.
  • Stabach, P. R., C. D. Cianci, S. B. Glantz, Z. Zhang, and J. S. Morrow. 1997. Site-directed mutagenesis of alpha II spectrin at codon 1175 modulates its mu-calpain susceptibility. Biochemistry 36: 57–65.
  • Stankewich, M. C., W. T. Tse, L. L. Peters, Y. Ch'ng, K. M. John, P. R. Stabach, P. Devarajan, J. S. Morrow, and S. E. Lux. 1998. A widely expressed betaIII spectrin associated with Golgi and cytoplasmic vesicles. Proc. Natl. Acad. Sci. USA 95: 14158–14163.
  • Stein, E., A. A. Lane, D. P. Cerretti, H. O. Schoecklmann, A. D. Schroff, R. L. Van Etten, and T. O. Daniel. 1998. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 12: 667–678.
  • Steiner, J. P., H. T. Walke, Jr., and V. Bennett. 1989. Calcium/calmodulin inhibits direct binding of spectrin to synaptosomal membranes. J. Biol. Chem. 264: 2783–2791.
  • Tailor, P., J. Gilman, S. Williams, C. Couture, and T. Mustelin. 1997. Regulation of the low molecular weight phosphotyrosine phosphatase by phosphorylation at tyrosines 131 and 132. J. Biol. Chem. 272: 5371–5374.
  • Tailor, P., J. Gilman, S. Williams, and T. Mustelin. 1999. A novel isoform of the low molecular weight phosphotyrosine phosphatase, LMPTP-C, arising from alternative mRNA splicing. Eur. J. Biochem. 262: 277–282.
  • Takeda, S., H. Yamazaki, D. H. Seog, Y. Kanai, S. Terada, and N. Hirokawa. 2000. Kinesin superfamily protein 3 (KIF3) motor transports fodrin- associating vesicles important for neurite building. J. Cell Biol. 148: 1255–1265.
  • Vidal, M., N. Goudreau, F. Cornille, D. Cussac, E. Gincel, and C. Garbay. 1999. Molecular and cellular analysis of Grb2 SH3 domain mutants: interaction with Sos and dynamin. J. Mol. Biol. 290: 717–730.
  • Wang, C. Y., S. K. Kong, and J. H. Wang. 1988. Characterization of fodrin phosphorylation by spleen protein tyrosine kinase. Biochemistry 27: 1254–1260.
  • Wu, Y., S. D. Spencer, and L. A. Lasky. 1998. Tyrosine phosphorylation regulates the SH3-mediated binding of the Wiskott-Aldrich syndrome protein to PSTPIP, a cytoskeletal-associated protein. J. Biol. Chem. 273: 5765–5770.
  • Zhao, H., S. Okada, J. E. Pessin, and G. A. Koretzky. 2067. 1998. Insulin receptor-mediated dissociation of Grb2 from Sos involves phosphorylation of Sos by kinase(s) other than extracellular signal-regulated kinase. J. Biol. Chem. 273: 12061–12067.
  • Ziemnicka-Kotula, D., J. Xu, H. Gu, A. Potempska, K. S. Kim, E. C. Jenkins, E. Trenkner, and L. Kotula. 1998. Identification of a candidate human spectrin Src homology 3 domain-binding protein suggests a general mechanism of association of tyrosine kinases with the spectrin-based membrane skeleton. J. Biol. Chem. 273: 13681–13692.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.