33
Views
98
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Protein Kinase C-δ Is a Negative Regulator of Antigen-Induced Mast Cell Degranulation

, , , , , & show all
Pages 3970-3980 | Received 20 Aug 2001, Accepted 11 Mar 2002, Published online: 27 Mar 2023

REFERENCES

  • Aman, M. J., T. D. Lamkin, H. Okada, T. Kurosaki, and K. S. Ravichandran. 1998. The inositol phosphatase SHIP inhibits Akt/PKB activation in B cells. J. Biol. Chem. 273: 33922–33928.
  • Baumann, G., D. Maier, F. Freuler, C. Tschopp, K. Baudisch, and J. Wienands. 1994. In vitro characterization of major ligands for Src homology 2 domains derived from protein tyrosine kinases, from the adaptor protein SHC and from GTPase-activating protein in Ramos B cells. Eur. J. Immunol. 24: 1799–1807.
  • Beaven, M. A., and H. Metzger. 1993. Signal transduction by Fc receptors: the Fc epsilon RI case. Immunol. Today 14: 222–226.
  • Bone, H., and M. J. Welham. 2000. Shc associates with the IL-3 receptor beta subunit, SHIP and Gab2 following IL-3 stimulation: contribution of Shc PTB and SH2 domains. Cell. Signal. 12: 183–194.
  • Chang, E. Y., Z. Szallasi, P. Acs, V. Raizada, P. C. Wolfe, C. Fewtrell, P. M. Blumberg, and J. Rivera. 1997. Functional effects of overexpression of protein kinase C-alpha, -beta, -delta, -epsilon, and -eta in the mast cell line RBL-2H3. J. Immunol. 159: 2624–2632.
  • Cissel, D. S., P. F. Fraundorfer, and M. A. Beaven. 1998. Thapsigargin-induced secretion is dependent on activation of a cholera toxin-sensitive and phosphatidylinositol-3-kinase-regulated phospholipase D in a mast cell line. J. Pharmacol. Exp. Ther. 285: 110–118.
  • Damen, J. E., L. Liu, P. Rosten, R. K. Humphries, A. B. Jefferson, P. W. Majerus, and G. Krystal. 1996. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc. Natl. Acad. Sci. USA 93: 1689–1693.
  • Damen, J. E., L. Liu, M. D. Ware, M. Ermolaeva, P. W. Majerus, and G. Krystal. 1998. Multiple forms of the SH2-containing inositol phosphatase, SHIP, are generated by C-terminal truncation. Blood 92: 1199–1205.
  • Damen, J. E., A. L. Mui, L. Puil, T. Pawson, and G. Krystal. 1993. Phosphatidylinositol 3-kinase associates, via its Src homology 2 domains, with the activated erythropoietin receptor. Blood 81: 3204–3210.
  • Damen, J. E., M. D. Ware, J. Kalesnikoff, M. R. Hughes, and G. Krystal. 2001. SHIP's C-terminus is essential for its hydrolysis of PIP3 and inhibition of mast cell degranulation. Blood 97: 1343–1351.
  • Dutil, E. M., and A. C. Newton. 2000. Dual role of pseudosubstrate in the coordinated regulation of protein kinase C by phosphorylation and diacylglycerol. J. Biol. Chem. 275: 10697–10701.
  • Falasca, M., S. K. Logan, V. P. Lehto, G. Baccante, M. A. Lemmon, and J. Schlessinger. 1998. Activation of phospholipase C gamma by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J. 17: 414–422.
  • Germano, P., J. Gomez, M. G. Kazanietz, P. M. Blumberg, and J. Rivera. 1994. Phosphorylation of the gamma chain of the high affinity receptor for immunoglobulin E by receptor-associated protein kinase C-delta. J. Biol. Chem. 269: 23102–23107.
  • Gu, H., K. Saito, L. D. Klaman, J. Shen, T. Fleming, Y. Wang, J. C. Pratt, G. Lin, B. Lim, J. P. Kinet, and B. G. Neel. 2001. Essential role for Gab2 in the allergic response. Nature 412: 186–190.
  • Harder, K. W., L. M. Parsons, J. Armes, N. Evans, N. Kountouri, R. Clark, C. Quilici, D. Grail, G. S. Hodgson, A. R. Dunn, and M. L. Hibbs. 2001. Gain- and loss-of-function Lyn mutant mice define a critical inhibitory role of Lyn in the myeloid lineage. Immunity 15: 603–615.
  • Harmer, S. L., and A. L. DeFranco. 1999. The Src homology domain 2-containing inositol phosphatase SHIP forms a ternary complex with Shc and Grb2 in antigen receptor-stimulated B lymphocytes. J. Biol. Chem. 274: 12183–12191.
  • Huber, M., C. D. Helgason, J. E. Damen, L. Liu, R. K. Humphries, and G. Krystal. 1998. The Src Homology 2-containing inositol phosphatase (SHIP) is the gatekeeper of mast cell degranulation. Proc. Natl. Acad. Sci. USA 95: 11330–11335.
  • Huber, M., C. D. Helgason, J. E. Damen, M. P. Scheid, V. Duronio, V. Lam, R. K. Humphries, and G. Krystal. 1999. The role of the SRC homology 2-containing inositol 5′-phosphatase in Fc epsilon R1-induced signaling. Curr. Top. Microbiol. Immunol. 244: 29–41.
  • Huber, M., C. D. Helgason, M. P. Scheid, V. Duronio, R. K. Humphries, and G. Krystal. 1998. Targeted disruption of SHIP leads to Steel factor-induced degranulation of mast cells. EMBO J. 17: 7311–7319.
  • Huber, M., M. R. Hughes, and G. Krystal. 2000. Thapsigargin-induced degranulation of mast cells is dependent on transient activation of phosphatidylinositol-3 kinase. J. Immunol. 165: 124–133.
  • Jabril-Cuenod, B., C. Zhang, A. M. Scharenberg, R. Paolini, R. Numerof, M. A. Beaven, and J. P. Kinet. 1996. Syk-dependent phosphorylation of Shc. A potential link between FcεRI and the Ras/mitogen-activated protein kinase signaling pathway through SOS and Grb2. J. Biol. Chem. 271: 16268–16272.
  • Karasuyama, H., and F. Melchers. 1988. Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. Eur. J. Immunol. 18: 97–104.
  • Kimura, T., H. Kihara, S. Bhattacharyya, H. Sakamoto, E. Appella, and R. P. Siraganian. 1996. Downstream signaling molecules bind to different phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) peptides of the high affinity IgE receptor. J. Biol. Chem. 271: 27962–27968.
  • Kimura, T., H. Sakamoto, E. Appella, and R. P. Siraganian. 1997. The negative signaling molecule SH2 domain-containing inositol-polyphosphate 5-phosphatase (SHIP) binds to the tyrosine-phosphorylated beta subunit of the high affinity IgE receptor. J. Biol. Chem. 272: 13991–13996.
  • Konishi, H., M. Tanaka, Y. Takemura, H. Matsuzaki, Y. Ono, U. Kikkawa, and Y. Nishizuka. 1997. Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc. Natl. Acad. Sci. USA 94: 11233–11237.
  • Konishi, H., E. Yamauchi, H. Taniguchi, T. Yamamoto, H. Matsuzaki, Y. Takemura, K. Ohmae, U. Kikkawa, and Y. Nishizuka. 2001. Phosphorylation sites of protein kinase C δ in H2O2-treated cells and its activation by tyrosine kinases in vitro. Proc. Natl. Acad. Sci. USA 98: 6587–6592.
  • Kozawa, O., P. Blume-Jensen, C. H. Heldin, and L. Ronnstrand. 1997. Involvement of phosphatidylinositol 3′-kinase in stem-cell-factor-induced phospholipase D activation and arachidonic acid release. Eur. J. Biochem. 248: 149–155.
  • Kronfeld, I., G. Kazimirsky, P. S. Lorenzo, S. H. Garfield, P. M. Blumberg, and C. Brodie. 2000. Phosphorylation of protein kinase C delta on distinct tyrosine residues regulates specific cellular functions. J. Biol. Chem. 275: 35491–35498.
  • Lamkin, T. D., S. F. Walk, L. Liu, J. E. Damen, G. Krystal, and K. S. Ravichandran. 1997. Shc interaction with Src homology 2 domain containing inositol phosphatase (SHIP) in vivo requires the Shc-phosphotyrosine binding domain and two specific phosphotyrosines on SHIP. J. Biol. Chem. 272: 10396–10401.
  • Le Good, J. A., W. H. Ziegler, D. B. Parekh, D. R. Alessi, P. Cohen, and P. J. Parker. 1998. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 281: 2042–2045.
  • Leitges, M., W. Elis, K. Gimborn, and M. Huber. 2001. Rottlerin-independent attenuation of pervanadate-induced tyrosine phosphorylation events by PKC-δ in hemopoietic cells. Lab. Investig. 81: 1087–1095.
  • Leitges, M., M. Mayr, U. Braun, U. Mayr, C. H. Li, G. Pfister, N. Ghaffari-Tabrizi, G. Baier, Y. H. Hu, and Q. B. Xu. 2001. Exacerbated vein graft arteriosclerosis in protein kinase C delta-null mice. J. Clin. Investig. 108: 1505–1512.
  • Li, W., X. H. Chen, C. A. Kelley, M. Alimandi, J. Zhang, Q. Chen, D. P. Bottaro, and J. H. Pierce. 1996. Identification of tyrosine 187 as a protein kinase C-delta phosphorylation site. J. Biol. Chem. 271: 26404–26409.
  • Liu, L., J. E. Damen, M. R. Hughes, I. Babic, F. R. Jirik, and G. Krystal. 1997. The Src homology 2 (SH2) domain of SH2-containing inositol phosphatase (SHIP) is essential for tyrosine phosphorylation of SHIP, its association with Shc, and its induction of apoptosis. J. Biol. Chem. 272: 8983–8988.
  • Mikhalap, S. V., L. M. Shlapatska, A. G. Berdova, C. L. Law, E. A. Clark, and S. P. Sidorenko. 1999. CDw150 associates with src-homology 2-containing inositol phosphatase and modulates CD95-mediated apoptosis. J. Immunol. 162: 5719–5727.
  • Mochly-Rosen, D., and A. S. Gordon. 1998. Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB J. 12: 35–42.
  • Ogita, K., S. Miyamoto, K. Yamaguchi, H. Koide, N. Fujisawa, U. Kikkawa, S. Sahara, Y. Fukami, and Y. Nishizuka. 1992. Isolation and characterization of delta-subspecies of protein kinase C from rat brain. Proc. Natl. Acad. Sci. USA 89: 1592–1596.
  • Osborne, M. A., G. Zenner, M. Lubinus, X. Zhang, Z. Songyang, L. C. Cantley, P. Majerus, P. Burn, and J. P. Kochan. 1996. The inositol 5′-phosphatase SHIP binds to immunoreceptor signaling motifs and responds to high affinity IgE receptor aggregation. J. Biol. Chem. 271: 29271–29278.
  • Ozawa, K., Z. Szallasi, M. G. Kazanietz, P. M. Blumberg, H. Mischak, J. F. Mushinski, and M. A. Beaven. 1993. Ca(2+)-dependent and Ca(2+)-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cells. Reconstitution of secretory responses with Ca(2+) and purified isozymes in washed permeabilized cells. J. Biol. Chem. 268: 1749–1756.
  • Parekh, D., W. Ziegler, K. Yonezawa, K. Hara, and P. J. Parker. 1999. Mammalian TOR controls one of two kinase pathways acting upon nPKC-δ and nPKC-ε. J. Biol. Chem. 274: 34758–34764.
  • Parekh, D. B., W. Ziegler, and P. J. Parker. 2000. Multiple pathways control protein kinase C phosphorylation. EMBO J. 19: 496–503.
  • Pasquet, J. M., L. Quek, C. Stevens, R. Bobe, M. Huber, V. Duronio, G. Krystal, and S. P. Watson. 2000. Phosphatidylinositol 3,4,5-trisphosphate regulates Ca2+ entry via Btk in platelets and megakaryocytes without increasing phospholipase C activity. EMBO J. 19: 2793–2802.
  • Phee, H., A. Jacob, and K. M. Coggeshall. 2000. Enzymatic activity of the Src homology 2 domain-containing inositol phosphatase is regulated by a plasma membrane location. J. Biol. Chem. 275: 19090–19097.
  • Salim, K., M. J. Bottomley, E. Querfurth, M. J. Zvelebil, I. Gout, R. Scaife, R. L. Margolis, R. Gigg, C. I. Smith, P. C. Driscoll, M. D. Waterfield, and G. Panayotou. 1996. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. EMBO J. 15: 6241–6250.
  • Scharenberg, A. M., O. El-Hillal, D. A. Fruman, L. O. Beitz, Z. Li, S. Lin, I. Gout, L. C. Cantley, D. J. Rawlings, and J. P. Kinet. 1998. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J. 17: 1961–1972.
  • Scheid, M. P., M. Huber, J. E. Damen, M. Hughes, V. Kang, P. Neilson, G. D. Prestwich, G. Krystal, and V. Duronio. 2002. Phosphatidylinositol(3,4,5)P3 is essential but not sufficient for PKB activation: phosphatidylinositol(3,4)P2 is required for PKB phosphorylation at Ser473. Studies using cells from SHIP knockout mice. J. Biol. Chem. 277: 9027–9035.
  • Schmandt, R., S. K. Liu, and C. J. McGlade. 1999. Cloning and characterization of mPAL, a novel Shc SH2 domain-binding protein expressed in proliferating cells. Oncogene. 18: 1867–1879.
  • Somani, A. F., K. Yuen, F. H. Xu, J. Y. Zhang, D. R. Branch, and K. A. Siminovitch. 2001. The SH2 domain containing tyrosine phosphatase-1 down-regulates activation of Lyn and Lyn-induced tyrosine phosphorylation of the CD19 receptor in B cells. J. Biol. Chem. 276: 1938–1944.
  • Song, J. S., P. G. Swann, Z. Szallasi, U. Blank, P. M. Blumberg, and J. Rivera. 1998. Tyrosine phosphorylation-dependent and -independent associations of protein kinase C-delta with Src family kinases in the RBL-2H3 mast cell line: regulation of Src family kinase activity by protein kinase C-delta. Oncogene 16: 3357–3368.
  • Songyang, Z., S. E. Shoelson, J. McGlade, P. Olivier, T. Pawson, X. R. Bustelo, M. Barbacid, H. Sabe, H. Hanafusa, T. Yi, et al. 1994. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol. Cell. Biol. 14: 2777–2785.
  • Szallasi, Z., M. F. Denning, E. Y. Chang, J. Rivera, S. H. Yuspa, C. Lehel, Z. Olah, W. B. Anderson, and P. M. Blumberg. 1995. Development of a rapid approach to identification of tyrosine phosphorylation sites: application to PKC-delta phosphorylated upon activation of the high affinity receptor for IgE in rat basophilic leukemia cells. Biochem. Biophys. Res. Commun. 214: 888–894.
  • Tamir, I., J. C. Stolpa, C. D. Helgason, K. Nakamura, P. Bruhns, M. Daeron, and J. C. Cambier. 2000. The RasGAP-binding protein p62dok is a mediator of inhibitory FcγRIIB signals in B cells. Immunity 12: 347–358.
  • Tridandapani, S., M. Pradhan, J. R. LaDine, S. Garber, C. L. Anderson, and K. M. Coggeshall. 1999. Protein interactions of Src homology 2 (SH2) domain-containing inositol phosphatase (SHIP): association with Shc displaces SHIP from Fc gamma RIIb in B cells. J. Immunol. 162: 1408–1414.
  • Xie, Z. H., J. Zhang, and R. P. Siraganian. 2000. Positive regulation of c-Jun N-terminal kinase and TNF-α production but not histamine release by SHP-1 in RBL-2H3 mast cells. J. Immunol. 164: 1521–1528.
  • Zhou, S., K. L. Carraway III, M. J. Eck, S. C. Harrison, R. A. Feldman, M. Mohammadi, J. Schlessinger, S. R. Hubbard, D. P. Smith, C. Eng, et al. 1995. Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature 373: 536–539.
  • Ziegler, W. H., D. B. Parekh, J. A. Le Good, R. D. Whelan, J. J. Kelly, M. Frech, B. A. Hemmings, and P. J. Parker. 1999. Rapamycin-sensitive phosphorylation of PKC on a carboxy-terminal site by an atypical PKC complex. Curr. Biol. 9: 522–529.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.