10
Views
61
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Dynamic Localization of an Okazaki Fragment Processing Protein Suggests a Novel Role in Telomere Replication

, , , &
Pages 4202-4217 | Received 19 Nov 2001, Accepted 22 Feb 2002, Published online: 27 Mar 2023

REFERENCES

  • Adams, A. K., and C. Holm. 1996. Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 4614–4620.
  • Aparicio, O. M., D. M. Weinstein, and S. Bell. 1997. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91: 59–69.
  • Bae, S., E. Choi, K. Lee, J. Park, S. Lee, and Y. Seo. 1998. Dna2 of Saccharomyces cerevisiae possesses a single-stranded DNA-specific endonuclease activity that is able to act on double-stranded DNA in the presence of ATP. J. Biol. Chem. 273: 26880–26890.
  • Bae, S. H., K.-H. Bae, J. A. Kim, and Y. S. Seo. 2001. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412: 456–461.
  • Bell, S. P., R. Kobayashi, and B. Stillman. 1993. Yeast origin recognition complex functions in transcription silencing and DNA replication. Science 262: 1844–1849.
  • Blackburn, E. H. 2000. Telomere states and cell fates. Nature 408: 53–56.
  • Bourns, B. D., M. K. Alexander, A. M. Smith, and V. A. Zakian. 1998. Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol. Cell. Biol. 18: 5600–5608.
  • Bryan, T. M., A. Englezou, L. Dalla-Pozza, M. A. Dunham, and R. R. Reddel. 1997. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 3: 1271–1274.
  • Budd, M. E., and J. L. Campbell. 2000. Interrelationships between DNA repair and DNA replication. Mutat. Res. 451: 241–255.
  • Budd, M. E., and J. L. Campbell. 1995. A new yeast gene required for DNA replication encodes a protein with homology to DNA helicases. Proc. Natl. Acad. Sci. USA 92: 7642–7646.
  • Budd, M. E., and J. L. Campbell. 2000. The pattern of sensitivity of yeast dna2 mutants to DNA damaging agents suggests a role in DSB and postreplication repair pathways. Mutat. Res. 459: 173–186.
  • Budd, M. E., and J. L. Campbell. 1997. A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out Its essential function. Mol. Cell. Biol. 17: 2136–2142.
  • Budd, M. E., W.-C. Choe, and J. L. Campbell. 1995. DNA2 encodes a DNA helicase essential for replication of eukaryotic chromosomes. J. Biol. Chem. 270: 26766–26769.
  • Budd, M. E., W.-C. Choe, and J. L. Campbell. 2000. The nuclease activity of the yeast Dna2 protein, which is related to the RecB-like nucleases, is essential in vivo. J. Biol. Chem. 275: 16518–16529.
  • Carson, M. J., and L. Hartwell. 1985. CDC17: an essential gene that prevents telomere elongation in S. cerevisiae. Cell 42: 249–257.
  • Chandra, A., T. R. Hughes, C. I. Nugent, and V. Lundblad. 2001. Cdc13 both positively and negatively regulates telomere replication. Genes Dev. 15: 404–414.
  • Cho, R., M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conay, L. Wodicka, T. G. Wolfsberg, A. E. Gabrielian, D. Landsman, D. J. Lockhart, and R. W. Davis. 1998. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2: 65–73.
  • Diede, S. G., and D. E. Gottschling. 1999. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerase alpha and delta. Cell 99: 723–733.
  • Dionne, I., and R. J. Wellinger. 1996. Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. Proc. Natl. Acad. Sci. USA 93: 13902–13907.
  • Dionne, I., and R. J. Wellinger. 1998. Processing of telomeric DNA ends requires the passage of a replication fork. Nucleic Acids Res. 26: 5365–5371.
  • DuBois, M. L., S. J. Diede, A. E. Stellwagen, and D. E. Gottschling. 2000. All things must end: telomere dynamics in S. cerevisiae. Cold Spring Harbor Symp. Quant. Biol. 65: 281–296.
  • Ferguson, B. M., B. J. Brewer, A. E. Reynolds, and W. L. Fangman. 1991. A yeast origin of replication is activated late in S-phase. Cell 65: 507-515.
  • Ferguson, B. M., and W. L. Fangman. 1992. A position effect on the time of replication origin activation in S. cerevisiae. Cell 68: 333–339.
  • Fiorentino, D. F., and G. R. Crabtree. 1997. Characterization of Saccharomyces cerevisiae dna2 mutants suggests a role for the helicase late in S Phase. Mol. Biol. Cell 8: 2519–2537.
  • Formosa, T., and T. Nitiss. 1999. Dna2 mutants reveal interactions with DNA polymerase alpha and Ctf4, a Pol alpha accessory factor, and show that full DNA2 helicase activity is not essential for growth. Genetics 151: 1459–1470.
  • Galy, V., J.-C. Olivo-Marin, H. Scherthan, V. Doyes, N. Rascalou, and U. Nehrbass. 2000. Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403: 108–112.
  • Gasser, S. 2000. A sense of the end. Science 288: 1377–1378.
  • Gotta, M., T. Laroche, A. Formenton, L. Maillet, H. Sherthan, and S. M. Gasser. 1996. The clustering of telomeres and colocalization with rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol. 134: 1349–1363.
  • Gotta, M., S. Strahl-Bolsinger, H. Renauld, T. Laroche, B. K. Kennedy, M. Grunstein, and S. M. Gasser. 1997. Localization of Sir2p: the nucleolus as a compartment for silent information regulators. EMBO J. 16: 3243–3255.
  • Gould, K. L., C. G. Burns, A. Feoktistiva, C. Hu, S. G. Pasion, and S. L. Forsburg. 1998. Fission yeast cdc24 + encodes a novel replication factor required for chromosome integrity. Genetics 149: 1221–1233.
  • Gravel, S., M. Larrivé, P. Labrecque, and R. J. Wellinger. 1998. Yeast Ku as a regulator of chromosomal DNA end structure. Science 280: 741-744.
  • Hughes, T. R., D. K. Morris, A. Salinger, N. Walcott, C. I. Nugent, and V. Lundblad. 1998. The role of the EST genes in S. cerevisiae telomere replication. Ciba Found. Symp. 211: 41–47.
  • Ireland, M. J., S. S. Reinke, and D. M. Livingston. 2000. The impact of lagging-strand replication mutations on the stability of CAG repeat tracts in S. cerevisiae. Genetics 155: 1657–1665.
  • Kang, J.-Y., E. Choi, S.-H. Bae, K.-H. Lee, B.-S. Gim, H.-D. Kim, C. Park, S. A. MacNeill, and Y.-S. Seo. 2000. Genetic analyses of Schizosaccharomyces pombe dna2 + reveal that Dna2 plays an essential role in Okazaki fragment metabolism. Genetics 155: 1055–1067.
  • Kuo, C.-L., C.-H. Huang, and J. L. Campbell. 1983. Isolation of yeast DNA replication mutants using permeabilized cells. Proc. Natl. Acad. Sci. USA 80: 6465–6469.
  • Laroche, T., S. G. Martin, M. Tsai-Pflugfelder, and S. Gasser. 2000. The dynamics of yeast telomeres and silencing proteins through the cell cycle. J. Struct. Biol. 129: 159–174.
  • Le, S., J. K. Moore, J. E. Haber, and C. W. Greider. 1999. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152: 143–152.
  • Liu, Q., W.-C. Choe, and J. L. Campbell. 1999. Identification of the Xenopus laevis homolog of Saccharomyces cerevisiae DNA2 and its role in DNA replication. J. Biol. Chem. 275: 1615–1624.
  • Lundblad, V., and E. H. Blackburn. 1993. An alternative pathway for yeast telomere maintenance rescues est1 − senescence. Cell 73: 347–360.
  • Marcand, S., V. Brevet, C. Mann, and E. Gilson. 2000. Cell cycle restriction of telomere elongation. Curr. Biol. 10: 487–490.
  • Martin, A. A., I. Donne, R. J. Wellinger, and C. Holm. 2000. The function of DNA polymerase α at telomeric G tails is important for telomere homeostasis. Mol. Cell. Biol. 20: 786–796.
  • Martin, S. G., T. Laroche, N. Suka, M. Grunstein, and S. M. Gasser. 1999. Relocalization of telomeric Ku and Sir proteins in response to DNA strand breaks in S. cerevisiae. Cell 97: 621–633.
  • Masumoto, H., A. Sugino, and H. Araki. 2000. Dpb11 controls the association between DNA polymerases alpha and varepsilon and the autonomously replicating sequence region of budding yeast. Mol. Cell. Biol. 20: 2809–2817.
  • McEachern, M. J., A. Krauskopf, and E. H. Blackburn. 2000. Telomeres and their control. Annu. Rev. Genet. 34: 331–358.
  • Mills, K. D., D. A. Sinclair, and L. Guarente. 1999. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell. 97: 609–620.
  • Nugent, C. I., and V. Lundblad. 1998. The telomerase reverse transcriptase: Components and regulation. Genes Dev. 12: 1073–1085.
  • Ohki, R., T. Tsurimoto, and F. Ishikawa. 2001. In vitro reconstitution of the end replication problem. Mol. Cell. Biol. 21: 5753–5766.
  • Parenteau, J., and R. J. Wellinger. 1999. Accumulation of single-stranded DNA and destabilization of telomeric repeats in S. cerevisiae mutant strains carrying a deletion of RAD27. Mol. Cell. Biol. 19: 4143–4152.
  • Pennock, E., K. Buckley, and V. Lundblad. 2001. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104: 387–396.
  • Price, C. M. 1997. Synthesis of the telomeric C-strand. A review. Biochemistry (Moscow) 62: 1216–1223.
  • Pryde, F. E., H. C. Gorham, and E. J. Louis. 1997. Chromosome ends: all the same under their caps. Curr. Opin. Genet. Dev. 7: 822–827.
  • Qi, H., and V. A. Zakian. 2000. The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase α and the telomerase-associated Est1 protein. Genes Dev. 14: 1777–1788.
  • Shore, D. 2000. The Sir2 protein family: a novel deacetylase for gene silencing and more. Proc. Nat. Acad. Sci. USA 97: 14030–14032.
  • Singer, M. S., A. Kahana, A. J. Wolf, L. L. Meisinger, S. E. Peterson, C. Goggin, M. Nahowald, and D. E. Gottschling. 1998. Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150: 613–632.
  • Spellman, P. T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher. 1998. Comprehensive identification of cell cycle-regulated genes in the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9: 3273–3297.
  • Tanaka, T., D. Knapp, and K. Nasmyth. 1997. Loading of an MCM protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 90: 649–660.
  • Tanaka, T., and K. Nasmyth. 1998. Association of RPA with chromosomal replication origins requires an Mcm protein, and is regulated by Rad53, and cyclin- and Dbf4-dependent kinases. EMBO J. 17: 5182–5191.
  • Teng, S.-C., J. Chang, B. McCowan, and V. A. Zakian. 2000. Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent Rif-inhibited recombinational process. Mol. Cell 6: 947–952.
  • Teng, S.-C., and V. A. Zakian. 1999. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19: 8083–8093.
  • Wellinger, R., A. Wolf, and V. Zakian. 1993. Origin activation and formation of single-strand TG1-3 tails occur sequentially in late S phase on a yeast linear plasmid. Mol. Cell. Biol. 13: 4057–4065.
  • Wellinger, R. J., K. Ethier, P. Labrecque, and V. A. Zakian. 1996. Evidence for a new step in telomere maintenance. Cell 85: 423–433.
  • Zou, H., and R. Rothstein. 1997. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90: 87–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.