30
Views
78
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Jun Dimerization Protein 2 Functions as a Progesterone Receptor N-Terminal Domain Coactivator

, , , &
Pages 5451-5466 | Received 12 Nov 2001, Accepted 25 Apr 2002, Published online: 27 Mar 2023

REFERENCES

  • Alen, P., F. Claessens, G. Verhoeven, W. Rombauts, and B. Peeters. 1999. The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol. Cell. Biol. 19: 6085–6097.
  • Allan, G., S. Leng, S. Tsai, N. Weigel, D. Edwards, M.-J. Tsai, and B. O'Malley. 1992. Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J. Biol. Chem. 267: 19513–19520.
  • Aronheim, A., E. Zandi, H. Hennemann, S. Elledge, and M. Karin. 1997. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol. Cell. Biol. 17: 3094–3102.
  • Bain, D., M. Franden, J. McManaman, G. Takimoto, and K. Horwitz. 2000. The N-terminal region of the human progesterone A-receptor. J. Biol. Chem. 275: 7313–7320.
  • Baudino, T., D. Kraichely, S. Jefcoat, Jr., S. Winchester, N. Partridge, and P. MacDonald. 1998. Isolation and characterization of a novel coactivator protein, NCoA-62, involved in vitamin D-mediated transcription. J. Biol. Chem. 273: 16434–16441.
  • Beck, C., N. Weigel, M. Moyer, S. Nordeen, and D. Edwards. 1993. The progesterone antagonist RU486 acquires agonist activity upon stimulation of cAMP signaling pathways. Proc. Natl. Acad. Sci. USA 90: 4441–4445.
  • Blanco, J., S. Minucci, J. Lu, X.-J. Yang, K. Walder, H. Chen, R. Evans, Y. Nakatani, and K. Ozato. 1998. The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev. 12: 1638–1651.
  • Boonyaratanakornkit, V., V. Melvin, P. Prendergast, M. Altmann, L. Ronfani, M. Bianchi, L. Taraseviciene, S. Nordeen, E. Allegretto, and D. Edwards. 1998. High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol. Cell. Biol. 18: 4471–4487.
  • Boonyaratanakornkit, V., M. Scott, V. Ribon, L. Sherman, S. Anderson, J. Maller, W. Miller, and D. Edwards. 2001. Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates c-Src family tyrosine kinases. Mol. Cell 8: 269–280.
  • Boonyaratanakornkit, V., D. Strong, S. Mohan, D. Baylink, C. Beck, and T. Linkhart. 1999. Progesterone stimulation of human insulin-like growth factor-binding protein-5 gene transcription in human osteoblasts is mediated by a CACC sequence in the proximal promoter. J. Biol. Chem. 274: 26431–26438.
  • Boruk, M., J. Savory, and R. Hache. 1998. AF-2-dependent potentiation of CCAAT enhancer binding protein β-mediated transcriptional activation by glucocorticoid receptor. Mol. Endocrinol. 12: 1749–1763.
  • Broder, Y., S. Katz, and A. Aronheim. 1998. The Ras recruitment system, a novel approach to the study of protein-protein interactions. Curr. Biol. 8: 1121–1124.
  • Chen, D., H. Ma, H. Hong, S. Koh, S.-M. Huang, B. Schurter, D. Aswad, and M. Stallcup. 1999. Regulation of transcription by a protein methyltransferase. Science 284: 2174–2177.
  • Christian, M., Y. Pohnke, R. Kempf, B. Gellersen, and J. Brosens. 2002. Functional association of PR and CCAAT/enhancer-binding protein β isoforms: promoter-dependent cooperation between PR-B and liver-enriched inhibitory protein, or liver-enriched activatory protein and PR-A in human endometrial stromal cells. Mol. Endocrinol. 16: 141–154.
  • Clemm, D., L. Sherman, V. Boonyaratanakornkit, W. Schrader, N. Weigel, and D. Edwards. 2000. Differential hormone-dependent phosphorylation of progesterone receptor A and B forms revealed by a phosphoserine site-specific monoclonal antibody. Mol. Endocrinol. 14: 52–65.
  • Dahl, R., B. Wani, and M. Hayman. 1998. The ski oncoprotein interacts with skip, the human homolog of Drosophila Bx42. Oncogene 16: 1579–1586.
  • Edwards, D. 2000. The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors. J. Mammary Gland Biol. Neoplasia 5: 295–310.
  • El-Ashry, D., S. Onate, S. Nordeen, and D. Edwards. 1989. Human progesterone receptor complexed with the antagonist RU486 binds to hormone response elements in a structurally altered form. Mol. Endocrinol. 3: 1545–1558.
  • Feng, W., R. Ribeiro, R. Wagner, H. Nguyen, J. Apriletti, R. Fletterick, J. Baxter, P. Kushner, and B. West. 1998. Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 280: 1747–1749.
  • Gass, E., S. Leonhardt, S. Nordeen, and D. Edwards. 1998. The antagonists RU486 and ZK98299 stimulate progesterone receptor binding to deoxyribonucleic acid in vitro and in vivo, but have distinct effects on receptor conformation. Endocrinology 139: 1905–1919.
  • Giangrande, P., E. Kimbrel, D. Edwards, and D. McDonnell. 2000. The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding. Mol. Cell. Biol. 20: 3102–3115.
  • Giangrande, P., G. Pollio, and D. McDonnell. 1997. Mapping and characterization of the functional domains responsible for the differential activity of the A and B isoforms of the human progesterone receptor. J. Biol. Chem. 272: 32889–32900.
  • Glass, C., and M. Rosenfeld. 2000. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14: 121–141.
  • Heery, D., E. Kalkhoven, S. Hoare, and M. Parker. 1997. A signature motif in transcriptional coactivators mediates binding to nuclear receptors. Nature 387: 733–736.
  • Hovland, A., R. Powell, G. Takimoto, and K. Horwitz. 1998. An N-terminal inhibitory function, IF, suppresses transcription by the A-isoform but not the B-isoform of human progesterone receptors. J. Biol. Chem. 273: 5455–5460.
  • Huang, N., E. vom Baur, J. Garnier, T. Lerouge, J. Vonesch, Y. Lutz, P. Chambon, and R. Losson. 1998. Two distinct nuclear receptor interaction domains in NSD1, a novel SET protein that exhibits characteristics of both corepressors and coactivators. EMBO J. 17: 3398–3412.
  • Iacobelli, M., W. Wachsman, and K. McGuire. 2000. Repression of IL-2 promoter activity by the novel basic leucine zipper p21SNFT protein. J. Immunol. 165: 860–868.
  • Imakado, S., S. Koike, S. Kondo, M. Sakai, and M. Muramatsu. 1991. The N-terminal transactivation domain of rat estrogen receptor is localized in a hydrophobic domain of eighty amino acids. J. Biochem. (Tokyo) 109: 684–689.
  • Jackson, T., J. Richer, D. Bain, G. Takimoto, L. Tung, and K. Horwitz. 1997. The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR and SMRT. Mol. Endocrinol. 11: 693–705.
  • Jenster, G., T. Spencer, M. Burcin, S. Tsai, M.-J. Tsai, and B. O'Malley. 1997. Steroid receptor induction of gene transcription: a two-step model. Proc. Natl. Acad. Sci. USA 94: 7879–7884.
  • Jin, C., H. Ugai, J. Song, T. Murata, F. Nili, K. Sun, M. Horikoshi, and K. Yokoyama. 2001. Identification of mouse Jun dimerization protein 2 as a novel repressor of ATF-2. FEBS Lett. 489: 31–41.
  • Kastner, P., A. Krust, B. Turcotte, U. Stropp, L. Tora, H. Gronemeyer, and P. Chambon. 1990. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 9: 1603–1614.
  • Lambert, J., and S. Nordeen. 2001. Analysis of steroid hormone-induced acetylation by chromatin immunoprecipitation assay, p. 273–281. In B. Lieberman (ed.), Methods in molecular biology, vol. 176. Humana Press Inc., Totowa, N.J.
  • Lanz, R., N. McKenna, S. Onate, U. Albrecht, J. Wong, S. Tsai, M.-J. Tsai, and B. O'Malley. 1999. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97: 17–27.
  • Le Douarin, B., A. Nielsen, J. Garnier, H. Ichinose, F. Jeanmougin, R. Losson, and P. Chambon. 1996. A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J. 15: 6701–6715.
  • Leo, C., and J. Chen. 2000. The SRC family of nuclear receptor coactivators. Gene 245: 1–11.
  • Ma, H., H. Hong, S.-M. Huang, R. Irvine, P. Webb, P. Kushner, G. Coetzee, and M. Stallcup. 1999. Multiple signal input and output domains of the 160-kilodalton nuclear receptor coactivator proteins. Mol. Cell. Biol. 19: 6164–6173.
  • Mangelsdorf, D., C. Thummel, M. Beato, P. Herrlich, G. Schutz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and R. Evans. 1995. The nuclear receptor superfamily: the second decade. Cell 83: 835–839.
  • McDonnell, D., M. Shahbaz, E. Vegato, and M. Goldman. 1994. The human progesterone receptor A-form functions as a transcriptional modulator of mineralocorticoid receptor transcriptional activity. J. Steroid Biochem. Mol. Biol. 48: 425–432.
  • Metzger, D., S. Ali, J.-M. Bornert, and P. Chambon. 1995. Characterization of the amino-terminal transcriptional activation function of the human estrogen receptor in animal and yeast cells. J. Biol. Chem. 270: 9535–9542.
  • Meyer, M.-E., A. Pornon, J. Ji, M.-T. Bocquel, P. Chambon, and H. Gronemeyer. 1990. Agonistic and antagonistic activities of RU486 on the functions of the human progesterone receptor. EMBO J. 9: 3923–3932.
  • Meyer, M.-E., C. Quirin-Stricker, T. Lerouge, M.-T. Bocquel, and H. Gronemeyer. 1992. A limiting factor mediates the differential activation of promoters by the human progesterone receptor isoforms. J. Biol. Chem. 267: 10882–10887.
  • Nordeen, S., B. Kuhnel, J. Lawler-Heavner, D. Barber, and D. Edwards. 1989. Quantitative comparison of dual control of a hormone response element by progestins and glucocorticoids in the same cell line. Mol. Endocrinol. 3: 1270–1278.
  • Oñate, S., V. Boonyaratanakornkit, T. Spencer, S. Tsai, M.-J. Tsai, D. Edwards, and B. O'Malley. 1998. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J. Biol. Chem. 273: 12101–12108.
  • Oñate, S., S. Tsai, M.-J. Tsai, and B. O'Malley. 1995. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270: 1354–1357.
  • Piu, F., A. Aronheim, S. Katz, and M. Karin. 2001. AP-1 repressor protein JDP-2: inhibition of UV-mediated apoptosis through p53 down-regulation. Mol. Cell. Biol. 21: 3012–3024.
  • Pratt, W., and D. Toft. 1997. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18: 306–360.
  • Puigserver, P., G. Adelmant, Z. Wu, M. Fan, J. Xu, B. O'Malley, and B. Spiegelman. 1999. Activation of PPARγ coactivator-1 through transcription factor docking. Science 286: 1368–1372.
  • Sartorius, C., M. Melville, A. Hovland, L. Tung, G. Takimoto, and K. Horwitz. 1994. A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform. Mol. Endocrinol. 8: 1347–1360.
  • Sartorius, C., L. Tung, G. Takimoto, and K. Horwitz. 1993. Antagonist-occupied human progesterone receptors bound to DNA are functionally switched to transcriptional agonists by cAMP. J. Biol. Chem. 268: 9262–9266.
  • Schwarz, E., M. Reginato, D. Shao, S. Krakow, and M. Lazar. 1997. Retinoic acid blocks adipogenesis by inhibiting C/EBPβ-mediated transcription. Mol. Cell. Biol. 17: 1552–1561.
  • Stein, B., and M. Yang. 1995. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-κB and C/EBPβ. Mol. Cell. Biol. 15: 4971–4979.
  • Tetel, M., P. Giangrande, S. Leonhardt, D. McDonnell, and D. Edwards. 1999. Hormone-dependent interaction between the amino- and carboxyl-terminal domains of progesterone receptor in vitro and in vivo. Mol. Endocrinol. 13: 910–924.
  • Tetel, M., S. Jung, P. Carbajo, T. Ladtkow, D. Skafar, and D. Edwards. 1997. Hinge and amino-terminal sequences contribute to solution dimerization of human progesterone receptor. Mol. Endocrinol. 11: 1114–1128.
  • Tora, L., J. White, C. Brou, D. Tasset, N. Webster, E. Scheer, and P. Chambon. 1989. The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59: 477–487.
  • Tsai, M.-J., and B. O'Malley. 1994. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63: 451–486.
  • Vegeto, E., G. Allan, W. Schrader, M.-J. Tsai, D. McDonnell, and B. O'Malley. 1992. The mechanism of RU486 antagonism in dependent on the conformation of the carboxyl-terminal tail of the human progesterone receptor. Cell 69: 703–713.
  • Vegeto, E., M. Shahbaz, D. Wen, M. Goldman, B. O'Malley, and D. McDonnell. 1993. Human progesterone receptor A form is a cell and promoter specific repressor or human progesterone receptor B function. Mol. Endocrinol. 7: 1244–1255.
  • Wagner, B., J. Norris, T. Knotts, N. Weigel, and D. McDonnell. 1998. The nuclear corepressors NCoR and SMRT are key regulators of both ligand- and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor. Mol. Cell. Biol. 18: 1369–1378.
  • Wagner, B., G. Pollio, S. Leonhardt, M. Wani, D.-W. Lee, M. Imhof, D. Edwards, C. Cook, and D. McDonnell. 1996. 16a-substituted analogs of the antiprogestin RU486 induce a unique conformation in the human progesterone receptor resulting in mixed agonist activity. Proc. Natl. Acad. Sci. USA 93: 8739–8744.
  • Webb, P., P. Nguyen, J. Shinsako, C. Anderson, W. Feng, M. Nguyen, D. Chen, S.-M. Huang, S. Subramanian, E. McKinerney, B. Katzenellenbogen, M. Stallcup, and P. Kushner. 1998. Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol. Endocrinol. 12: 1605–1618.
  • Weigel, N., C. Beck, P. Estes, P. Prendergast, M. Altmann, K. Christensen, and D. Edwards. 1992. Ligands induce conformational changes in the carboxyl-terminus of progesterone receptors which are detected by a site-directed antipeptide monoclonal antibody. Mol. Endocrinol. 6: 1585–1597.
  • Wen, D., Y.-F. Xu, D. Mais, M. Goldman, and D. McDonnell. 1994. The A and B isoforms of the human progesterone receptor operate through distinct signaling pathways within target cells. Mol. Cell. Biol. 14: 8356–8364.
  • Zhao, H., F. Herrera, E. Coronado-Heinsohn, M. Yang, J. Ludes-Meyers, K. Seybold-Tilson, Z. Nawaz, D. Yee, F. Barr, S. Diab, P. Brown, S. Fuqua, and C. Osborne. 2001. Forkhead homologue in rhabdomyosarcoma functions as a bifunctional nuclear receptor-interacting protein with both coactivator and corepressor functions. J. Biol. Chem. 276: 27907–27912.
  • Zhou, S., M. Fujimuro, J. Hsieh, L. Chen, and S. Hayward. 2000. A role for SKIP in EBNA2 activation of CBF1-repressed promoters. J. Virol. 74: 1939–1947.
  • Zhou, S., M. Fujimuro, J.-D. Hsieh, L. Chen, A. Miyamoto, G. Weinmaster, and S. Hayward. 2000. SKIP, a CBF-associated protein, interacts with the ankyrin repeat domain of NotchIC to facilitate NotchIC function. Mol. Cell. Biol. 20: 2400–2410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.