9
Views
36
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Major Histocompatibility Complex Class II Transcriptional Platform: Assembly of Nuclear Factor Y and Regulatory Factor X (RFX) on DNA Requires RFX5 Dimers

, , , &
Pages 5616-5625 | Received 31 Oct 2001, Accepted 16 Apr 2002, Published online: 27 Mar 2023

REFERENCES

  • Alberti, S., S. Oehler, B. von Wilcken-Bergmann, H. Kramer, and B. Muller-Hill. 1991. Dimer-to-tetramer assembly of Lac repressor involves a leucine heptad repeat. New Biol. 3: 57–62.
  • Bellorini, M., J. C. Dantonel, J. B. Yoon, R. G. Roeder, L. Tora, and R. Mantovani. 1996. The major histocompatibility complex class II Ea promoter requires TFIID binding to an initiator sequence. Mol. Cell. Biol. 16: 503–512.
  • Boss, J. M. 1999. A common set of factors control the expression of the MHC class II, invariant chain, and HLA-DM genes. Microbes Infect. 1: 847–853.
  • Boss, J. M., and J. L. Strominger. 1986. Regulation of a transfected human class II major histocompatibility complex gene in human fibroblasts. Proc. Natl. Acad. Sci. USA 83: 9139–9143.
  • Bottazzo, G. F., R. Pujol-Borrell, T. Hanafusa, and M. Feldmann. 1983. Role of aberrant HLA-DR expression and antigen presentation in induction of endocrine autoimmunity. Lancet ii: 1115–1119.
  • Brickey, W. J., K. L. Wright, X. S. Zhu, and J. P. Ting. 1999. Analysis of the defect in IFN-gamma induction of MHC class II genes in G1B cells: identification of a novel and functionally critical leucine-rich motif (62-LYLYLQL-68) in the regulatory factor X 5 transcription factor. J. Immunol. 163: 6622–6630.
  • Caretti, G., F. Cocchiarella, C. Sidoli, J. Villard, M. Peretti, W. Reith, and R. Mantovani. 2000. Dissection of functional NF-Y-RFX cooperative interactions on the MHC class II Ea promoter. J. Mol. Biol. 302: 539–552.
  • Chan, S., H. Gabra, F. Hill, G. Evan, and K. Sikora. 1987. A novel tumour marker related to the c-myc oncogene product. Mol. Cell Probes 1: 73–82.
  • Cresswell, P. 1994. Assembly, transport, and function of MHC class II molecules. Annu. Rev. Immunol. 12: 259–293.
  • Currie, R. A. 1998. NF-Y is associated with the histone acetyltransferases GCN5 and P/CAF. J. Biol. Chem. 273: 1430–1434.
  • de Crombrugghe, B., V. Lefebvre, R. R. Behringer, W. Bi, S. Murakami, and W. Huang. 2000. Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol. 19: 389–394.
  • DeSandro, A. M., U. M. Nagarajan, and J. M. Boss. 2000. Associations and interactions between bare lymphocyte syndrome factors. Mol. Cell. Biol. 20: 6587–6599.
  • Fontes, J. D., N. Jabrane-Ferrat, and B. M. Peterlin. 1997. Assembly of functional regulatory complexes on MHC class II promoters in vivo. J. Mol. Biol. 270: 336–345.
  • Fontes, J. D., S. Kanazawa, N. Nekrep, and B. M. Peterlin. 1999. The class II transactivator CIITA is a transcriptional integrator. Microbes Infect. 1: 863–869.
  • Gajiwala, K. S., H. Chen, F. Cornille, B. P. Roques, W. Reith, B. Mach, and S. K. Burley. 2000. Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 403: 916–921.
  • Ghosh, S., M. J. Selby, and B. M. Peterlin. 1993. Synergism between Tat and VP16 in trans-activation of HIV-1 LTR. J. Mol. Biol. 234: 610–619.
  • Jabrane-Ferrat, N., J. D. Fontes, J. M. Boss, and B. M. Peterlin. 1996. Complex architecture of major histocompatibility complex class II promoters: reiterated motifs and conserved protein-protein interactions. Mol. Cell. Biol. 16: 4683–4690.
  • Kanazawa, S., T. Okamoto, and B. M. Peterlin. 2000. Tat competes with CIITA for the binding to P-TEFb and blocks the expression of MHC class II genes in HIV infection. Immunity 12: 61–70.
  • Kara, C. J., and L. H. Glimcher. 1991. In vivo footprinting of MHC class II genes: bare promoters in the bare lymphocyte syndrome. Science 252: 709–712.
  • Kretsovali, A., C. Spilianakis, A. Dimakopoulos, T. Makatounakis, and J. Papamatheakis. 2001. Self-association of class II transactivator correlates with its intracellular localization and transactivation. J. Biol. Chem. 276: 32191–32197.
  • Lemon, B., and R. Tjian. 2000. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 14: 2551–2569.
  • Li, Q., M. Herrler, N. Landsberger, N. Kaludov, V. V. Ogryzko, Y. Nakatani, and A. P. Wolffe. 1998. Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J. 17: 6300–6315.
  • Linhoff, M. W., J. A. Harton, D. E. Cressman, B. K. Martin, and J. P. Ting. 2001. Two distinct domains within CIITA mediate self-association: involvement of the GTP-binding and leucine-rich repeat domains. Mol. Cell. Biol. 21: 3001–3011.
  • Linhoff, M. W., K. L. Wright, and J. P. Ting. 1997. CCAAT-binding factor NF-Y and RFX are required for in vivo assembly of a nucleoprotein complex that spans 250 base pairs: the invariant chain promoter as a model. Mol. Cell. Biol. 17: 4589–4596.
  • Mantovani, R. 1999. The molecular biology of the CCAAT-binding factor NF-Y. Gene 239: 15–27.
  • Mantovani, R., L. Tora, V. Moncollin, J. M. Egly, C. Benoist, and D. Mathis. 1993. The major histocompatibility complex (MHC) Ea promoter: sequences and factors at the initiation site. Nucleic Acids Res. 21: 4873–4878.
  • Masternak, K., E. Barras, M. Zufferey, B. Conrad, G. Corthals, R. Aebersold, J. C. Sanchez, D. F. Hochstrasser, B. Mach, and W. Reith. 1998. A gene encoding a novel RFX-associated transactivator is mutated in the majority of MHC class II deficiency patients. Nat. Genet. 20: 273–277.
  • Masternak, K., A. Muhlethaler-Mottet, J. Villard, M. Zufferey, V. Steimle, and W. Reith. 2000. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev. 14: 1156–1166.
  • Milos, P. M., and K. S. Zaret. 1992. A ubiquitous factor is required for C/EBP-related proteins to form stable transcription complexes on an albumin promoter segment in vitro. Genes Dev. 6: 991–1004.
  • Moitra, J., L. Szilak, D. Krylov, and C. Vinson. 1997. Leucine is the most stabilizing aliphatic amino acid in the d position of a dimeric leucine zipper coiled coil. Biochemistry 36: 12567–12573.
  • Moreno, C. S., G. W. Beresford, P. Louis-Plence, A. C. Morris, and J. M. Boss. 1999. CREB regulates MHC class II expression in a CIITA-dependent manner. Immunity 10: 143–151.
  • Nagarajan, U. M., P. Louis-Plence, A. DeSandro, R. Nilsen, A. Bushey, and J. M. Boss. 1999. RFX-B is the gene responsible for the most common cause of the bare lymphocyte syndrome, an MHC class II immunodeficiency. Immunity 10: 153–162.
  • Nekrep, N., M. Geyer, N. Jabrane-Ferrat, and B. M. Peterlin. 2001. Analysis of ankyrin repeats reveals how a single point mutation in RFXANK results in bare lymphocyte syndrome. Mol. Cell. Biol. 21: 5566–5576.
  • Nekrep, N., N. Jabrane-Ferrat, and B. M. Peterlin. 2000. Mutations in the bare lymphocyte syndrome define critical steps in the assembly of the regulatory factor X complex. Mol. Cell. Biol. 20: 4455–4461.
  • Reith, W., and B. Mach. 2001. The bare lymphocyte syndrome and the regulation of MHC expression. Annu. Rev. Immunol. 19: 331–373.
  • Setterblad, N., B. M. Peterlin, and G. Andersson. 1997. Role of the X2 box in activated transcription from the DRA promoter in B cells. Immunogenetics 46: 318–325.
  • Sisk, T. J., S. Roys, and C. H. Chang. 2001. Self-association of CIITA and its transactivation potential. Mol. Cell. Biol. 21: 4919–4928.
  • Steimle, V., L. A. Otten, M. Zufferey, and B. Mach. 1993. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 75: 135–146.
  • Ting, J. P., and X. S. Zhu. 1999. Class II MHC genes: a model gene regulatory system with great biologic consequences. Microbes Infect. 1: 855–861.
  • Tsang, S. Y., M. Nakanishi, and B. M. Peterlin. 1988. B-cell-specific and interferon-gamma-inducible regulation of the HLA-DR alpha gene. Proc. Natl. Acad. Sci. USA 85: 8598–8602.
  • Tsang, S. Y., M. Nakanishi, and B. M. Peterlin. 1990. Mutational analysis of the DRA promoter: cis-acting sequences and trans-acting factors. Mol. Cell. Biol. 10: 711–719.
  • Vilen, B. J., J. P. Cogswell, and J. P. Ting. 1991. Stereospecific alignment of the X and Y elements is required for major histocompatibility complex class II DRA promoter function. Mol. Cell. Biol. 11: 2406–2415.
  • Vilen, B. J., J. F. Penta, and J. P. Ting. 1992. Structural constraints within a trimeric transcriptional regulatory region. Constitutive and interferon-gamma-inducible expression of the HLA-DRA gene. J. Biol. Chem. 267: 23728–23734.
  • Villard, J., M. Peretti, K. Masternak, E. Barras, G. Caretti, R. Mantovani, and W. Reith. 2000. A functionally essential domain of RFX5 mediates activation of major histocompatibility complex class II promoters by promoting cooperative binding between, RFX, and NF-Y. Mol. Cell. Biol. 20: 3364–3376.
  • Viret, C., and C. A. Janeway, Jr. 1999. MHC and T cell development. Rev. Immunogenet. 1: 91–104.
  • Zhu, X. S., M. W. Linhoff, G. Li, K. C. Chin, S. N. Maity, and J. P. Ting. 2000. Transcriptional scaffold: CIITA interacts with NF-Y, RFX, and CREB to cause stereospecific regulation of the class II major histocompatibility complex promoter. Mol. Cell. Biol. 20: 6051–6061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.