63
Views
101
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Gene Structure and Functional Analysis of the Mouse Nidogen-2 Gene: Nidogen-2 Is Not Essential for Basement Membrane Formation in Mice

, , , , , , , & show all
Pages 6820-6830 | Received 15 Apr 2002, Accepted 10 Jun 2002, Published online: 27 Mar 2023

REFERENCES

  • Arikawa-Hirasawa, E., H. Watanabe, H. Takami, J. R. Hassell, and Y. Yamada. 1999. Perlecan is essential for cartilage and cephalic development. Nat. Genet. 23: 354–358.
  • Bork, P., A. K. Downing, B. Kieffer, and I. D. Campbell. 1996. Structure and distribution of modules in extracellular proteins. Q. Rev. Biophys. 29: 119–167.
  • Brennan, J., and W. C. Skarnes. 1999. Gene trapping in mouse embryonic stem cells. Methods Mol. Biol. 97: 123–138.
  • Brown, J. C., T. Sasaki, W. Göhring, Y. Yamada, and R. Timpl. 1997. The C-terminal domain V of perlecan promotes β1 integrin-mediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified by glycosaminoglycans. Eur. J. Biochem. 250: 39–46.
  • Costell, M., E. Gustafsson, A. Aszodi, M. Mörgelin, W. Bloch, E. Hunziker, K. Addicks, R. Timpl, and R. Fässler. 1999. Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol. 147: 1109–1122.
  • Durkin, M. E., U. M. Wewer, and A. E. Chung. 1995. Exon organization of the mouse entactin gene corresponds to the structural domains of the polypeptide and has regional homology to the low-density lipoprotein receptor gene. Genomics 26: 219–228.
  • Dziadek, M., and R. Timpl. 1985. Expression of nidogen and laminin in basement membranes during mouse embryogenesis and in teratocarcinoma cells. Dev. Biol. 111: 372–382.
  • Ekblom, P. 1993. Basement membranes in development, p. 359–378. In D. H. Rohrbach and R. Timpl (ed.), Molecular and cellular aspects of basement membranes. Academic Press, New York, N.Y.
  • Ekblom, P., M. Ekblom, L. Fecker, G. Klein, H.-Y. Zhang, Y. Kadoya, M.-L. Chu, U. Mayer, and R. Timpl. 1994. Role of mesenchymal nidogen for epithelial morphogenesis in vitro. Development 120: 2003–2014.
  • Ekblom, P., M. Durbeej, and M. Ekblom. 1996. Laminin isoforms in development, p. 185–216. In P. Ekblom and R. Timpl (ed.), The laminins. Harwood Academic Publishers, Chur, Switzerland.
  • Fox, J. W., U. Mayer, R. Nischt, M. Aumailley, D. Reinhardt, H. Wiedemann, K. Mann, R. Timpl, T. Krieg, J. Engel, and M.-L. Chu. 1991. Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J. 10: 3137–3146.
  • Grant, D. S., and H. K. Kleinman. 1997. Regulation of capillary formation by laminin and other components of the extracellular matrix, p. 317–359. In I. D. Goldberg and E. M. Rosen (ed.), Regulation of angiogenesis. Birkhäuser Verlag, Basel, Switzerland.
  • Hungerford, J. E., G. K. Owens, W. S. Argraves, and C. D. Little. 1996. Development of aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers. Dev. Biol. 178: 375–392.
  • Hutter, H., B. E. Vogel, J. D. Plenefisch, C. R. Norris, R. B. Proenca, J. Spieth, C. Guo, S. Mastwal, X. Zhu, J. Scheel, and E. M. Hedgecock. 2000. Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science 287: 989–994.
  • Jenkins, N. A., M. J. Justice, D. J. Gilbert, M.-L. Chu, and N. G. Copeland. 1991. Nidogen/entactin (Nid) maps to the proximal end of mouse chromosome 13 linked to beige (bg) and identifies a new region of homology between mouse and human chromosomes. Genomics 9: 401–403.
  • Kadoya, Y., K. Salmivirta, J. F. Talts, K. Kadoya, U. Mayer, R. Timpl, and P. Ekblom. 1997. Importance of nidogen binding to laminin γ1 for branching epithelial morphogenesis of the submandibular gland. Development 124: 683–691.
  • Kang, S. H., and J. M. Kramer. 2000. Nidogen is not essentiell and not required for normal collagen IV localization in Caenorhabditis elegans. Mol. Biol. Cell 11: 3911–3923.
  • Kim, S., and W. G. Wadsworth. 2000. Positioning of longitudinal nerves in C. elegans by nidogen. Science 288: 150–154.
  • Kimura, N., T. Toyoshima, T. Kojima, and M. Shimane. 1998. Entactin-2: a new member of basement membrane protein with high homology to entactin/nidogen. Exp. Cell Res. 241: 36–45.
  • Kleinman, H. K., M. L. McGarvey, L. A. Liotta, P. Gehron Robebey, K. Tryggvarson, and G. R. Martin. 1982. Isolation and characterization of IV procollagen, laminin and heparan sulfate proteoglycan from EHS sarcoma. Biochemistry 21: 6188–6193.
  • Kohfeldt, E., T. Sasaki, W. Göhring, and R. Timpl. 1998. Nidogen-2: a new basement membrane protein with diverse binding properties. J. Mol. Biol. 282: 99–109.
  • Kostka, G., R. Giltay, W. Bloch, K. Addicks, R. Timpl, R. Fässler, and M.-L. Chu. 2001. Perinatal lethality and endothelial cell abnormalities in several compartments of fibulin-1-deficient mice. Mol. Cell. Biol. 20: 7025–7034.
  • Mann, K., R. Deutzmann, M. Aumailley, R. Timpl, L. Raimondi, Y. Yamada, T.-C. Pan, D. Conway, and M.-L. Chu. 1989. Amino acid sequence of mouse nidogen, a multidomain basement membrane protein with binding activity for laminin, collagen IV and cells. EMBO J. 8: 65–72.
  • Mayer, U., R. Nischt, E. Pöschl, K. Mann, K. Fukuda, M. Gerl, Y. Yamada, and R. Timpl. 1993. A single EGF-like motif of laminin is responsible for high affinity nidogen binding. EMBO J. 125: 1879–1885.
  • Mayer, U., and R. Timpl. 1994. Nidogen, a versatile binding protein of basement membranes, p. 389–416. In P. D. Yurchenco, D. Birk, and R. P. Mecham (ed.), Extracellular matrix assembly and structure. Academic Press, Orlando, Fla.
  • Mayer, U., K. Zimmermann, K. Mann, D. Reinhardt, R. Timpl, and R. Nischt. 1995. Binding properties and protease stability of recombinant human nidogen. Eur. J. Biochem. 227: 681–686.
  • Mayer, U., E. Kohfeldt, and R. Timpl. 1998. Structural and genetic analysis of laminin-nidogen interaction. Ann. N. Y. Acad. Sci. 857: 130–142.
  • McCarthy, L. C., J. Terrett, M. E. Davis, C. J. Knights, A. L. Smith, R. Critcher, K. Schmitt, J. Hudson, N. K. Spurr, and P. N. Goodfellow. 1997. A first-generation whole genome-radiation hybrid map spanning the mouse genome. Genome Res. 7: 1153–1161.
  • Miner, J. H., J. Cunningham, and J. R. Sanes. 1998. Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin α5 chain. J. Cell Biol. 143: 1713–1723.
  • Miosge, N., T. Sasaki, and R. Timpl. 1999. Angiogenesis inhibitor endostatin is a distinct component of elastic fibers in vessel walls. FASEB J. 13: 1743–1790.
  • Miosge, N., S. Heinemann, A. Leissling, C. Klenczar, and R. Herken. 1999. Ultrastructural triple localization of laminin-1, nidogen-1, and collagen type IV helps elucidate basement membrane structure in vivo. Anat. Rec. 254: 382–388.
  • Miosge, N., F. Quondamatteo, C. Klenczar, and R. Herken. 2000. Nidogen-1: expression and ultrastructural localization during the onset of mesoderm formation in the early mouse embryo. J. Histochem. Cytochem. 48: 229–237.
  • Miosge, N., F. Köther, S. Heinemann, E. Kohfeld, R. Herken, and R. Timpl. 2000. Ultrastructural colocalization of nidogen-1 and nidogen-2 in murine kidney basement membranes. Histochem. Cell Biol. 113: 115–124.
  • Mitchell, K. J., K. I. Pinson, O. G. Kelly, J. Brennan, J. Zupicich, P. Scherz, P. A. Leighton, L. V. Goodrich, X. Lu, B. J. Avery, P. Tate, K. Dill, E. Pangilinan, P. Wakenight, M. Tessier-Lavigne, and W. C. Skarnes. 2001. Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat. Genet. 28: 241–249.
  • Murshed, M., N. Smyth, N. Miosge, J. Karolat, T. Krieg, M. Paulsson, and R. Nischt. 2000. The absence of nidogen 1 does not affect murine basement membrane formation. Mol. Cell. Biol. 20: 7007–7012.
  • Nakae, H., M. Sugano, Y. Ishimori, T. Endo, and T. Obinata. 1993. Ascidian entactin/nidogen. Implication of evolution by shuffling two kinds of cysteine-rich motifs. Eur. J. Biochem. 213: 11–19.
  • Nakamura, T., P. R. Lozana, Y. Ikeda, Y. Iwanga, A. Hinek, S. Minamisawa, C.-F. Cheng, K. Kobuke, N. Dalton, Y. Takada, K. Tashiro, J. Ross, Jr., T. Honjo, and K. R. Chien. 2002. Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature 415: 171–175.
  • Nicosia, R. F., E. Bonanno, M. Smith, and P. Yurchenco. 1994. Modulation of angiogenesis in vitro by laminin-entactin complex. Dev. Biol. 164: 197–206.
  • Paulsson, M., R. Deutzmann, M. Dziadek, H. Nowack, R. Timpl, S. Weber, and J. Engel. 1986. Purification and properties of intact and degraded nidogen obtained from a tumor basement membrane. Eur. J. Biochem. 166: 11–19.
  • Quandt, K., K. Frech, H. Karas, E. Wingender, and T. Werner. 1995. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23: 4878–4884.
  • Ries, A., W. Göhring, J. W. Fox, R. Timpl, and T. Sasaki. 2001. Recombinant domains of mouse nidogen and their binding to basement membrane proteins and monoclonal antibodies. Eur. J. Biochem. 268: 5119–5128.
  • Rowe, L. B., M. E. Barter, and J. T. Eppig. 2000. Cross-referencing radiation hybrid data to the recombination map: lessons from mouse chromosome 18. Genomics 69: 27–36.
  • Ryan, M. C., K. Lee, Y. Myashita, and W. G. Carter. 1999. Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. J. Cell Biol. 145: 1309–1323.
  • Salmivirta, K., J. F. Talts, M. Olsson, T. Sasaki, R. Timpl, and P. Ekblom. Binding of mouse nidogen-2 to basement membrane components and cells and its expression in embryonic and adult tissues suggest complementary functions of the two nidogens. Exp. Cell Res., in press.
  • Sasaki, T., K. Mann, G. Murphy, M.-L. Chu, and R. Timpl. 1996. Different susceptibilities of fibulin-1 and fibulin-2 to cleavage by matrix metalloproteinases and other tissue proteases. Eur. J. Biochem. 240: 427–434.
  • Sasaki, T., W. Göhring, N. Miosge, W. R. Abrams, J. Rosenbloom, and R. Timpl. 1999. Tropoelastin binding to fibulins, nidogen-2 and other extracellular matrix proteins. FEBS Lett. 460: 280–284.
  • Sasaki, T., W. Göhring, K. Mann, C. Brakebusch, Y. Yamada, R. Fässler, and R. Timpl. 2001. Short arm region of laminin-5 γ2 chain: structure, mechanisms of processing and binding to heparin and proteins. J. Mol. Biol. 314: 761–763.
  • Sharp, P. A., and C. B. Burge. 1997. Classification of introns: U2-type or U12-type. Cell 91: 875–879.
  • Skarnes, W. C., J. E. Moss, S. M. Hurtley, and R. S. Beddington. 1995. Capturing genes encoding membrane and secretory proteins important for mouse development. Proc. Natl. Acad. Sci. USA 92: 6592–6596.
  • Smyth, N., H. S. Vatansever, P. Murray, M. Meyer, C. Frie, M. Paulsson, and D. Edgar. 1999. Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to the failure of endoderm differentiation. J. Cell Biol. 144: 151–160.
  • Springer, T. A. 1998. An extracellular β-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components. J. Mol. Biol. 283: 837–862.
  • Streuli, C. 1996. Basement membrane as a differentiation and survival factor, p. 185–216. In P. Ekblom and R. Timpl (ed.), The laminins. Harwood Academic Publishers, Chur, Switzerland.
  • Thyboll, J., J. Kortesmaa, C. Renhai, R. Soininen, L. Wang, A. Iivanainen, L. Sorokin, M. Risling, Y. Cao, and K. Tryggvason. 2002. Deletion of the laminin α4 chain leads to impaired microvessel maturation. Mol. Cell. Biol. 22: 1194–1202.
  • Timpl, R., and J. C. Brown. 1996. Supramolecular assembly of basement membranes. Bioessay 18: 123–132.
  • Timpl, R., and L. Risteli. 1982. Radioimmunoassays in studies of connective tissue proteins, p. 199–235. In H. Furthmayr (ed.), Immunochemistry of the extracellular matrix, vol. I. Methods. CRC Press, Boca Raton, Fla.
  • Townley, D. J., B. J. Avery, B. Rosen, and W. C. Skarnes. 1997. Rapid sequence analysis of gene trap integrations to generate a resource of insertional mutations in mice. Genome Res. 7: 293–298.
  • Willem, M., N. Miosge, W. Halfter, N. Smyth, I. Jannetti, E. Burghart, R. Timpl, and U. Mayer. 2002. Specific ablation of the nidogen-binding site in the laminin γ1 chain interferes with kidney and lung development. Development 129: 2711–2722.
  • Van Etten, W. J., R. G. Steen, H. Nguyen, A. B. Castle, D. K. Slonim, B. Ge, C. Nusbaum, G. D. Schuler, E. S. Lander, and T. J. Hudson. 1999. Radiation hybrid map of the mouse genome. Nat. Genet. 22: 384–387.
  • Xu, H., P. Christmas, X. R. Wu, U. M. Wewer, and E. Engvall. 1994. Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc. Natl. Acad. Sci. USA 91: 5572–5576.
  • Yanagisawa, H., E. C. Davis, B. C. Starcher, T. Ouchi, M. Yanagisawa, J. A. Richardson, and E. N. Olson. 2002. Fibulin-5 is an elastin-binding protein essential for elastic fibre development. Nature 415: 168–171.
  • Zhang, H.-Y., R. Timpl, T. Sasaki, M.-L. Chu, and P. Ekblom. 1996. Fibulin-1 and fibulin-2 expression during organogenesis in the developing mouse embryo. Dev. Dyn. 205: 348–364.
  • Zimmermann, K., S. Hoischen, M. Hafner, and R. Nischt. 1995. Genomic sequences and structural organization of the human nidogen gene (NID). Genomics 27: 245–250.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.