22
Views
63
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Heat Shock Transcription Factor 2 Is Not Essential for Embryonic Development, Fertility, or Adult Cognitive and Psychomotor Function in Mice

, , , , , , , , & show all
Pages 8005-8014 | Received 25 Jun 2002, Accepted 20 Aug 2002, Published online: 28 Mar 2023

REFERENCES

  • Alastalo, T. P., M. Lonnstrom, S. Leppa, K. Kaarniranta, M. Pelto-Huikko, L. Sistonen, and M. Parvinen. 1998. Stage-specific expression and cellular localization of the heat shock factor 2 isoforms in the rat seminiferous epithelium. Exp. Cell. Res. 240: 16–27.
  • Benjamin, I. J., B. Kroger, and R. S. Williams. 1990. Activation of the heat shock transcription factor by hypoxia in mammalian cells. Proc. Natl. Acad. Sci. USA 87: 6263–6267.
  • Brown, I. R., and S. J. Rush. 1999. Cellular localization of the heat shock transcription factors HSF1 and HSF2 in the rat brain during postnatal development and following hyperthermia. Brain Res. 821: 333–340.
  • Christians, E., A. A. Davis, S. T. Thomas, and I. J. Benjamin. 2000. Maternal effect of Hsf1 on reproductive success. Nature 407: 693–694.
  • Christians, E., E. Michel, P. Adenot, V. Mezger, M. Rallu, M. Morange, and J.-P. Renard. 1997. Evidence for the involvement of mouse heat shock factor 1 in the atypical expression of the HSP70.1 heat shock gene during mouse zygotic genome activation. Mol. Cell. Biol. 17: 778–788.
  • Dix, D. J., J. W. Allen, B. W. Collins, C. Mori, N. Nakamura, P. Poorman-Allen, E. H. Goulding, and E. M. Reddy. 1996. Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc. Natl. Acad. Sci. USA 93: 3264–3268.
  • Dix, D. J., M. Rosario-Herrle, H. Gotoh, C. Mori, E. H. Goulding, C. V. Barrett, and E. M. Eddy. 1996. Developmentally regulated expression of Hsp70-2 and a Hsp70-2/lacZ transgene during spermatogenesis. Dev. Biol. 174: 310–321.
  • Du, X. J., T. J. Cole, N. Tenis, X. M. Gao, F. Kontgen, B. E. Kemp, and J. Heierhorst. 2002. Impaired cardiac contractility response to hemodynamic stress in S100A1-deficient mice. Mol. Cell. Biol. 22: 2821–2829.
  • Eriksson, M., E. Jokinen, L. Sistonen, and S. Leppa. 2000. Heat shock factor 2 is activated during mouse heart development. Int. J. Dev. Biol. 44: 471–477.
  • Fenteany, G., R. F. Standaert, W. S. Lane, S. Choi, E. J. Corey, and S. L. Schreiber. 1995. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268: 726–731.
  • Fiorenza, M. T., T. Farkas, M. Dissing, D. Kolding, and V. Zimarino. 1995. Complex expression of murine heat shock transcription factors. Nucleic Acids Res. 23: 467–474.
  • Forster, M. J., A. Dubey, K. M. Dawson, W. A. Stutts, H. Lal, and R. S. Sohal. 1996. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc. Natl. Acad. Sci. USA 93: 4765–4769.
  • Forster, M. J., and H. Lal. 1991. Neurobehavioral biomarkers of aging: influence of genotype and dietary restriction. Biomed. Environ. Sci. 4: 144–165.
  • Forster, M. J., and H. Lal. 1992. Within-subject behavioral analysis of recent memory in aging mice. Behav. Pharmacol. 3: 337–349.
  • Goodson, M. L., O. K. Park-Sarge, and K. D. Sarge. 1995. Tissue-dependent expression of heat shock factor 2 isoforms with distinct transcriptional activities. Mol. Cell. Biol. 15: 5288–5293.
  • Jedlicka, P., M. A. Mortin, and C. Wu. 1997. Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J. 16: 2452–2462.
  • Kallio, M., Y. Chang, M. Manuel, T. Alastalo, M. Rallu, Y. Gitton, L. Pirkkala, M. Loones, L. Paslaru, S. Larney, S. Hiard, M. Morange, L. Sistonen, and V. Mezger. 2002. Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J. 21: 2591–2601.
  • Kawazoe, Y., A. Nakai, M. Tanabe, and K. Nagata. 1998. Proteasome inhibition leads to the activation of all members of the heat-shock-factor family. Eur. J. Biochem. 255: 356–362.
  • Kim, D., S. H. Kim, and G. C. Li. 1999. Proteasome inhibitors MG132 and lactacystin hyperphosphorylate HSF1 and induce hsp70 and hsp27 expression. Biochem. Biophys. Res. Commun. 254: 264–268.
  • Kroeger, P. E., and R. I. Morimoto. 1994. Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Mol. Cell. Biol. 14: 7592–7603.
  • Kroeger, P. E., K. D. Sarge, and R. I. Morimoto. 1993. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Mol. Cell. Biol. 13: 3370–3383.
  • Manuel, M., J. Sage, M. G. Mattei, M. Morange, and V. Mezger. 1999. Genomic structure and chromosomal localization of the mouse Hsf2 gene and promoter sequences. Gene 232: 115–124.
  • Mathew, A., S. K. Mathur, C. Jolly, S. G. Fox, S. Kim, and R. I. Morimoto. 2001. Stress-specific activation and repression of heat shock factors 1 and 2. Mol. Cell. Biol. 21: 7163–7171.
  • Mathew, A., S. K. Mathur, and R. I. Morimoto. 1998. Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol. Cell. Biol. 18: 5091–5098.
  • McMillan, D. R., X. Xiao, L. Shao, K. Graves, and I. J. Benjamin. 1998. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J. Biol. Chem. 273: 7523–7528.
  • Mezger, V., M. Rallu, R. I. Morimoto, M. Morange, and J. P. Renard. 1994. Heat shock factor 2-like activity in mouse blastocysts. Dev. Biol. 166: 819–822.
  • Min, J. N., M. Y. Han, S. S. Lee, K. J. Kim, and Y. M. Park. 2000. Regulation of rat heat shock factor 2 expression during the early organogenic phase of embryogenesis. Biochim. Biophys. Acta 1494: 256–262.
  • Montagutelli, X. 2000. Effect of the genetic background on the phenotype of mouse mutations. J. Am. Soc. Nephrol. 11(Suppl. 16): S101–S105.
  • Morano, K. A., and D. J. Thiele. 1999. Heat shock factor function and regulation in response to cellular stress, growth, and differentiation signals. Gene Expr. 7: 271–282.
  • Morimoto, R. I. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12: 3788–3796.
  • Nakai, A., and R. I. Morimoto. 1993. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell. Biol. 13: 1983–1997.
  • Nakai, A., M. Tanabe, Y. Kawazoe, J. Inazawa, R. I. Morimoto, and K. Nagata. 1997. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell. Biol. 17: 469–481.
  • Pirkkala, L., T. P. Alastalo, X. Zuo, I. J. Benjamin, and L. Sistonen. 2000. Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol. Cell. Biol. 20: 2670–2675.
  • Pirkkala, L., P. Nykanen, and L. Sistonen. 2001. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15: 1118–1131.
  • Pritts, T. A., E. S. Hungness, D. D. Hershko, B. W. Robb, X. Sun, G. J. Luo, J. E. Fischer, H. R. Wong, and P. O. Hasselgren. 2002. Proteasome inhibitors induce heat shock response and increase IL-6 expression in human intestinal epithelial cells. Am. J. Physiol. Endocrinol. Metab. 282: R1016–R1026.
  • Rallu, M., M. Loones, Y. Lallemand, R. Morimoto, M. Morange, and V. Mezger. 1997. Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc. Natl. Acad. Sci. USA 94: 2392–2397.
  • Rosario, M. O., S. L. Perkins, D. A. O'Brien, R. L. Allen, and E. M. Eddy. 1992. Identification of the gene for the developmentally expressed 70 kDa heat-shock protein (P70) of mouse spermatogenic cells. Dev. Biol. 150: 1–11.
  • Sarge, K. D., O. K. Park-Sarge, J. D. Kirby, K. E. Mayo, and R. I. Morimoto. 1994. Expression of heat shock factor 2 in mouse testis: potential role as a regulator of heat-shock protein gene expression during spermatogenesis. Biol. Reprod. 50: 1334–1343.
  • Sarge, K. D., V. Zimarino, K. Holm, C. Wu, and R. I. Morimoto. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 5: 1902–1911.
  • Schuetz, T. J., G. J. Gallo, L. Sheldon, P. Tempst, and R. E. Kingston. 1991. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 88: 6911–6915.
  • Sistonen, L., K. D. Sarge, and R. I. Morimoto. 1994. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol. Cell. Biol. 14: 2087–2099.
  • Sistonen, L., K. D. Sarge, B. Phillips, K. Abravaya, and R. I. Morimoto. 1992. Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol. Cell. Biol. 12: 4104–4111.
  • Soriano, P., C. Montgomery, R. Geske, and A. Bradley. 1991. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64: 693–702.
  • Stacchiotti, A., R. Rezzani, L. Rodella, L. Tiberio, L. Schiaffonati, and R. Bianchi. 1999. Cell-specific expression of heat shock transcription factors 1 and 2 in unstressed rat spinal cord. Neurosci. Lett. 268: 73–76.
  • Tanemura, K., M. Kurohmaru, K. Kuramoto, and Y. Hayashi. 1993. Age-related morphological changes in the testis of the BDF1 mouse. J. Vet. Med. Sci. 55: 703–710.
  • Xiao, X., X. Zuo, A. A. Davis, D. R. McMillan, B. B. Curry, J. A. Richardson, and I. J. Benjamin. 1999. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 18: 5943–5952.
  • Yoshima, T., T. Yura, and H. Yanagi. 1998. Heat shock factor 1 mediates hemin-induced hsp70 gene transcription in K562 erythroleukemia cells. J. Biol. Chem. 273: 25466–25471.
  • Zhu, Z., and N. F. Mivechi. 1999. Regulatory domain of human heat shock transcription factor-2 is not regulated by hemin or heat shock. J. Cell. Biochem. 73: 56–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.