7
Views
99
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Activation of NF-κB Is Essential for Hepatocyte Growth Factor-Mediated Proliferation and Tubulogenesis

, &
Pages 1060-1072 | Received 16 Apr 2001, Accepted 26 Nov 2001, Published online: 28 Mar 2023

REFERENCES

  • Ait-Si-Ait, S., D. Carlisi, S. Ramirez, L. C. Upegui-Gonzalez, A. Duquet, P. Robin, B. Rudkin, A. Harel-Bellan, and D. Trouche. 1999. Phosphorylation by p44 MAP kinase/ERK1 stimulates CBP histone acetyl transferase activity in vivo. Biochem. Biophys. Res. Commun. 262: 157-162.
  • Anrather, J., V. Csizmadia, M. P. Soares, and H. Winkler. 1999. Regulation of NF-κB RelA phosphorylation and transcriptional activity by p21ras and protein kinase Cξ in primary endothelial cells. J. Biol. Chem. 274: 13594–13603.
  • Ashkenazi, A., and V. M. Dixit. 1998. Death receptors: signaling and modulation. Science 281: 1305–1308.
  • Baldwin, A. S., Jr. 1996. The NF-κB and IkB proteins: new discoveries and insights. Annu. Rev. Immunol. 14: 649–681.
  • Bardelli, A., P. Longati, D. Albero, S. Goruppi, C. Schneider, C. Ponzetto, and P. M. Comoglio. 1996. HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. EMBO J. 15: 6205–6212.
  • Barkett, M., and T. Gilmore. 1999. Control of apoptosis by Rel/NF-κB transcription factors. Oncogene 18: 6910–6924.
  • Beg, A. A., W. C. Sha, R. T. Bronson, S. Ghosh, and D. Baltimore. 1995. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376: 167–170.
  • Beg, A. A., and D. Baltimore. 1996. An essential role for NF-κB in preventing TNFα induced cell death. Science 274: 782–784.
  • Bennett, J. H., M. J. Morgan, S. A. Whawell, P. Atkin, P. Roblin, J. Furness, and P. M. Speight. 2000. Metalloproteinase expression in normal and malignant oral keratinocytes: stimulation of MMP-2 and -9 by scatter factor. Eur. J. Oral Sci. 108: 281–291.
  • Bergman, M., L. Hart, M. Lindsay, P. J. Barnes, and R. Newton. 1998. IκBα degradation and nuclear factor-κB DNA binding are insufficient for interleukin-1β and tumor necrosis-α-induced κB-dependent transcription. J. Biol. Chem. 273: 6607–6610.
  • Bertrand, F., A. Atfi, A. Cadoret, G. L'Allemain, H. Robin, O. Lascols, J. Chapeau, and G. Cherqui. 1998. A role for nuclear factor κb in the antiapoptotic function of insulin. J. Biol. Chem. 273: 2931–2938.
  • Bhargava, M., A. Joseph, J. Knesel, R. Halaban, Y. Li, S. Pang, I. Goldberg, E. Setter, M. A. Donovan, R. Zarnegar, G. A. Michalopoulos, T. Nakamura, D. Faletto, and E. M. Rosen. 1992. Scatter factor and hepatocyte growth factor: activities, properties and mechanism. Cell Growth Differ. 3: 11–20.
  • Birchmeier, C., and E. Gherardi. 1998. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol. 8: 404–410.
  • Boccaccio, C., G. Gaudino, G. Gambarotta, F. Galimi, and P. M. Comoglio. 1994. Hepatocyte growth factor (HGF) receptor expression is inducible and is part of the delayed-early response to HGF. J. Biol. Chem. 269: 12846–12851.
  • Boccaccio, C., M. Andò, L. Tamagnone, A. Bardelli, P. Michieli, C. Battistini, and P. M. Comoglio. 1998. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature 391: 285–288.
  • Boros, P., and C. M. Miller. 1995. Hepatocyte growth factor: a multifunctional cytokine. Lancet 345: 293–295.
  • Bowers, D. C., S. Fan, K. A. Walter, R. Abounader, J. A. Williams, E. M. Rosen, and J. Laterra. 2000. Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways. Cancer Res. 60: 4277–4283.
  • Bradham, C. A., J. Plümpe, M. P. Manns, D. A. Brenner, and C. Trautwein. 1998. Mechanisms of hepatic toxicity. I. TNFα-induced liver injury. Am. J. Physiol. 275: G387-G392.
  • Brent Carter, A., K. L. Knudtson, M. M. Monick, and G. W. Hunninghake. 1999. The p38 mitogen-activated protein kinase is required for NF-κB-dependent gene expression. J. Biol. Chem. 274: 30858–30863.
  • Brent Carter, A., and G. W. Hunninghake. 2000. A constitutive active MEK → ERK pathway negatively regulates NF-κB-dependent gene expression by modulating TATA-binding protein phosphorylation. J. Biol. Chem. 275: 27858–27864.
  • Brinkmann, V., H. Foroutan, H. Sachs, K. M. Weidner, and W. Birchmeier. 1995. Hepatocyte growth factor/scatter factor induces a variety of tissue specific morphogenic programs in epithelial cells. J. Cell Biol. 131: 1573–1586.
  • Brockman, J. A., D. C. Scherer, T. A. McKinsey, S. M. Hall, X. Qi, W. Y. Lee, and D. W. Ballard. 1995. Coupling of a signal response domain in IkBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15: 2809–2818.
  • Bussolino, F., F. Di Renzo, M. Ziche, E. Bocchietto, M. Olivero, L. Naldini, G. Gaudino, L. Tamagnone, A. Coffer, and P. M. Comoglio. 1992. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 119: 629–641.
  • Castagnino, P., M. V. Lorenzi, J. Yeh, D. Breckenridge, H. Sakata, B. Munz, S. Werner, and D. P. Bottaro. 2000. Neu differentiation factor/heregulin induction by hepatocyte and keratinocyte growth factors. Oncogene 19: 640–648.
  • Delhase, M., N. Li, and M. Karin. 2000. Kinase regulation in inflammatory response. Nature 406: 367–368.
  • Doi, T. S., M. W. Marino, T. Takahashi, T. Yoshida, T. Sakakura, L. J. Old, and Y. Obata. 1999. Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality. Proc. Natl. Acad. Sci. USA 96: 2994–2999.
  • Fujita, T., G. P. Nolan, H. C. Liou, M. L. Scott, and D. Baltimore. 1993. The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-kappa B p50 homodimers. Genes Dev. 7: 1354–1363.
  • Gherardi, E., and M. Stoker. 1991. Hepatocyte growth factor-scatter factor: mitogen, motogen and met. Cancer Cells 3: 227–232.
  • Gual, P., S. Giordano, T. A. Williams, S. Rocchi, E. Van Obberghen, and P. M. Comoglio. 2000. Sustained recruitment of phospholipase C-gamma to Gab-1 is required for HGF-induced branching tubulogenesis. Oncogene 19: 1509–1518.
  • Guttridge, D. C., C. Albanese, J. Y. Reuther, R. G. Pestell, and A. S. Baldwin, Jr. 1999. NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell. Biol. 19: 5785–5799.
  • Habib, A. A., S. Chatterjee, S. K. Park, R. R. Ratan, S. Lefebvre, and T. Vartanian. 2001. The epidermal growth factor receptor engages receptor interacting protein and nuclear factor-kappa b (nf-kappa b)-inducing kinase to activate nf-kappa b. Identification of a novel receptor-tyrosine kinase signalosome. J. Biol. Chem. 276: 8865–8874.
  • Heck, S., F. Lezoualc'h, S. Egert, and C. Behl. 1999. Insulin-like growth factor-1-mediated neuroprotection against oxidative stress is associated with activation of nuclear factor κb. J. Biol. Chem. 274: 9828–9835.
  • Hinz, M., D. Krappmann, A. Eichten, A. Heder, C. Scheidereit, and M. Strauss. 1999. NF-κB function in growth control: regulation of cyclin expression and Go/G1-to-S-phase transition. Mol. Cell. Biol. 19: 2690–2698.
  • Iimuro, Y., T. Nishiura, C. Hellerbrand, K. E. Behrns, R. Schoonhoven, J. W. Grisham, and D. A. Brenner. 1998. NFκB prevents apoptosis and liver dysfunction during liver regeneration. J. Clin. Investig. 101: 802–811.
  • Ishiki, Y., H. Ohnishi, Y. Muto, K. Matsumoto, and T. Nakamura. 1992. Direct evidence that hepatocyte growth factor is a hepatotrophic factor for liver regeneration and has a potent antihepatitis effect in vivo. Hepatology 16: 1227–1235.
  • Jefferies, C. A., and L. A. J. O'Neill. 2000. Rac1 regulates interleukin 1-induced nuclear factor κb activation in an inhibitory protein κbα-independent manner by enhancing the ability of the p65 subunit to transactivate gene expression. J. Biol. Chem. 275: 3114–3120.
  • Jiang, W., S. Hiscox, K. Matsumoto, and T. Nakamura. 1999. Hepatocyte growth factor/scatter factor, its molecular, cellular and clinical implications in cancer. Crit. Rev. Oncol.-Hematol. 29: 209–248.
  • Karin, M. 1999. The beginning of the end: IκB kinase (IKK) and NF-κB activation. J. Biol. Chem. 274: 27339–27342.
  • Kasibhatla, S., T. Brunner, L. Genestier, F. Echeverri, A. Mahboubi, and D. R. Green. 1998. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-κB and AP-1. Mol. Cell 1: 543–551.
  • Khwaja, A., K. Lehmann, B. M. Marte, and J. Downward. 1998. Phosphoinositide 3-kinase induces scattering and tubulogenesis in epithelial cells through a novel pathway. J. Biol. Chem. 273: 18793–18801.
  • Kosai, K., K. Matsumoto, S. Nagata, Y. Tsujimoto, and T. Nakamura. 1998. Abrogation of Fas-induced fulminant hepatic failure in mice by hepatocyte growth factor. Biochem. Biophys. Res. Commun. 244: 683–690.
  • Lee, P. P., J. J. Hwang, G. Murphy, and M. M. Ip. 2000. Functional significance of MMP-9 in tumor necrosis factor-induced proliferation and branching morphogenesis of mammary epithelial cells. Endocrinology 141: 3764–3773.
  • Liu, R. Y., C. Fan, G. Liu, N. E. Olashaw, and K. S. Zuckerman. 2000. Activation of p38 mitogen-activated protein kinase is required for tumor necrosis factor-α-supported proliferation of leukemia and lymphoma cell lines. J. Biol. Chem. 275: 21086–21093.
  • Liu, Y. 1999. Hepatocyte growth factor promotes renal epithelial cell survival by dual mechanisms. Am. J. Physiol. 277: F624-F633.
  • Madge, L. A., and J. S. Pober. 2000. A phosphatidylinositol 3-kinase/Akt pathway, activated by tumor necrosis factor or interleukin-1, inhibits apoptosis but does not activate NFκB in human endothelial cells. J. Biol. Chem. 275: 15458–15465.
  • Madrid, L. V., C. V. Wang, D. C. Guttridge, A. J. G. Schottelius, A. S. Baldwin, Jr., and M. W. Mayo. 2000. Akt supresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-κB. Mol. Cell. Biol. 20: 1626–1638.
  • Maggirwar, S. B., P. D. Sarmiere, S. Dewhurst, and R. S. Freeman. 1998. Nerve growth factor-dependent activation of NF-κB contributes to survival of sympathetic neurons. J. Neurosci. 18: 10356–10365.
  • Maina, F., F. Casagranda, E. Audero, A. Simeone, P. M. Comoglio, R. Klein, and C. Ponzetto. 1996. Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell 87: 531–542.
  • Maina, F., M. C. Hilton, C. Ponzetto, A. M. Davies, and R. Klein. 1997. Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev. 11: 3341–3350.
  • Maroun, C. R., M. Holgado-Madruga, I. Royal, M. A. Naujokas, T. M. Fournier, A. J. Wong, and M. Park. 1999. The Gab1 PH domain is required for localization of Gab1 at sites of cell-cell contact and epithelial morphogenesis from the Met receptor tyrosine kinase. Mol. Cell. Biol. 19: 1784–1799.
  • Matsumoto, K., and T. Nakamura. 1996. Emerging multipotent aspects of hepatocyte growth factor. J. Biochem. 119: 591–600.
  • Mayo, M. W., and A. S. Baldwin. 2000. The transcription factor NF-κB: control of oncogenesis and cancer therapy resistance. Biochem. Biophys. Acta 1470: M55-M62.
  • Medico, E., A. M. Mongiovi, J. Huff, M. A. Jelinek, A. Follenzi, G. Gaudino, J. T. Parsons, and P. M. Comoglio. 1996. The tyrosine kinase receptors Ron and Sea control "scattering' and morphogenesis of liver progenitor cells in vitro. Mol. Biol. Cell 7: 495–504.
  • Medico, E., G. Gambarotta, A. Gentile, P. M. Comoglio, and P. Soriano. 2001. A gene trap vector system for identifying transcriptionally responsive genes. Nat. Biotechnol. 19: 579–582.
  • Norris, J. L., and A. S. Baldwin, Jr. 1999. Oncogenic ras enhances NF-κB transcriptional activity through Raf-dependent and Raf-independent mitogen-activated protein kinase signaling pathways. J. Biol. Chem. 20: 13841–13846.
  • Pahl, H. L. 1999. Activators and target genes of Rel/NF-κB transcriptions factors. Oncogene 18: 6853–6866.
  • Perkins, N. D. 2000. The Rel/NF-κB family: friend and foe. Trends Biochem. Sci. 25: 434–440.
  • Pierce, J. W., R. Schoenleber, G. Jesmok, J. Best, S. A. Moore, T. Collins, and M. E. Gerritsen. 1997. Novel inhibitors of cytokine-induced IκBα phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J. Biol. Chem. 272: 21096–21103.
  • Pomerance, M., M. C. Multon, F. Parker, C. Venot, J. P. Blondeau, B. Tocqué, and F. Schweighoffer. 1998. Grb2 interaction with MEK-kinase 1 is involved in regulation of Jun-kinase activities in response to epidermal growth factor. J. Biol. Chem. 273: 24301–24303.
  • Ponzetto, C., A. Bardelli, Z. Zhen, F. Maina, P. dalla Zonca, S. Giordano, A. Graziani, G. Panayotou, and P. M. Comoglio. 1994. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77: 261–271.
  • Ponzetto, C., G. Pantè, C. Prunotto, A. Ieraci, and F. Maina. 2000. Met signaling mutants as tools for developmental studies. Int. J. Dev. Biol. 44: 645–653.
  • Rauch, B. H., A. Weber, M. Braun, N. Zimmermann, and K. Schror. 2000. PDGF-induced Akt phosphorylation does not activate NF-κB in human vascular smooth muscle cells and fibroblasts. FEBS Lett. 481: 3–7.
  • Romashkova, J. A., and S. S. Makarov. 1999. NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401: 86–89.
  • Rothwarf, D. M., and M. Karin. 1999. The NF-κB activation pathway: a paradigm in information transfer from membrane to nucleus. Science Signal Transduction Knowl. Environ. [Online.]. www.stke.org/cgi/content/full/OC_sigtrans;1999/5/re1.
  • Ryan, K. M., M. K. Ernst, N. R. Rice, and K. H. Vousden. 2000. Role of NF-κB in p53-mediated programmed cell death. Nature 404: 892–897.
  • Schmidt, C., F. Bladt, S. Goedecke, V. Brinkmann, W. Zschiesche, M. Sharpe, E. Gherardi, and C. Birchmeier. 1995. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373: 699–702.
  • Schmitz, M. L., S. Bacher, and M. Kracht. 2001. IkB-independent control of NF-kB activity by modulatory phosphorylations. Trends Biochem. Sci. 26: 186–190.
  • Senaldi, G., C. L. Shaklee, B. Simon, C. G. Rowan, D. L. Lacey, and T. Hartung. 1998. Keratinocyte growth factor protects murine hepatocytes from tumor necrosis-induced apoptosis in vivo and in vivo. Hepatology 27: 1584–1591.
  • Seol, D. W., Q. Chen, and R. Zarnegar. 2000. Transcriptional activation of the hepatocyte growth factor receptor (c-met) gene by its ligand (hepatocyte growth factor) is mediated through AP-1. Oncogene 19: 1132–1137.
  • Shono, T., M. Ono, H. Izumi, S.-I. Jimi, K. Matsushima, T. Okamoto, K. Kohno, and M. Kuwano. 1996. Involvement of the transcription factor NF-κB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol. Cell. Biol. 16: 4231–4239.
  • Sizemore, N., S. Leung, and G. R. Starck. 1999. Activation of phosphatidylinositol 3-kinase in response to interleukin-3 leads to phosphorylation and activation of the NF-κB p65/RelA subunit. Mol. Cell. Biol. 19: 4798–4805.
  • Stylianou, E., and J. Saklatvala. 1998. Interleukin-1. Int. J. Biochem. Cell. Biol. 30: 1075–1079.
  • Suzuki, A., M. Hayashida, H. Kawano, K. Sugimoto, T. Nakano, and K. Shiraki. 2000. Hepatocyte growth factor promotes cell survival from Fas-mediated cell death in hepatocellular carcinoma cells via Akt activation and Fas-death-inducing signaling complex suppression. Hepatology 32: 796–802.
  • Van Antwerp, D. J., S. J. Martin, T. Kafri, D. R. Green, and I. M. Verma. 1996. Suppression of TNFα induced apoptosis by NF-κB. Science 274: 787–789.
  • Vanden Berghe, W., S. Plaisance, E. Boone, K. De Bosscher, M. L. Schmitz, W. Fiers, and G. Haegeman. 1998. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-κb p65 transactivation by tumor necrosis factor. J. Biol. Chem. 273: 3285–3290.
  • Wang, D., and A. S. Baldwin. 1998. Activation of nuclear factor-kB-dependent transcription by tumor necrosis factor-α is mediated through phosphorylation of RelA/p65 on serine 529. J. Biol. Chem. 273: 29411–29416.
  • Wang, D., S. D. Westerheide, J. L. Hanson, and A. S. Baldwin, Jr. 2000. Tumor necrosis factor α-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J. Biol. Chem. 275: 32592–32597.
  • Wesselborg, S., M. K. A. Bauer, M. Vogt, M. L. Schmitz, and K. Schulze-Osthoff. 1997. Activation of transcription factor NF-κB and p38 mitogen-activated protein kinase is mediated by distinct and separate stress effector pathways. J. Biol. Chem. 272: 12422–12429.
  • Whiteside, S. T., M. K. Ernst, O. Lebail, C. Laurent-Winter, N. Rice, and A. Israël. 1995. N- and T-terminal sequences control degradation of MAD3/IκBα in response to inducers of NF-κB activity. Mol. Cell. Biol. 15: 5339–5345.
  • Wojta, J., C. Kaun, J. M. Breuss, Y. Koshelnick, R. Beckmann, E. Hattey, M. Mildner, W. Weninger, T. Nakamura, E. Tschachler, and B. B. Binder. 1999. Hepatocyte growth factor increases expression of vascular endothelial growth factor and plasminogen activator inhibitor-1 in human keratinocytes and the vascular endothelial growth factor receptor flk-1 in human endothelial cells. Lab. Investig. 79: 427–438.
  • Xiu, X., S. Bialik, B. E. Jones, Y. Iimuro, R. N. Kitsis, A. Srinivasan, D. A. Brenner, and M. J. Czaja. 1998. NF-κB inactivation converts a hepatocyte cell line TNFα response from proliferation to apoptosis. Am. J. Physiol. 275: C1058-C1066.
  • Zhang, L., T. Himi, I. Morita, and S. Murota. 2000. Hepatocyte growth factor protects cultured rat cerebellar granule neurons from apoptosis via the phosphatidylinositol-3 kinase/Akt pathway. J. Neurosci. Res. 59: 489–496.
  • Zhong, H., R. E. Voll, and S. Ghosh. 1998. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1: 661–671.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.