67
Views
135
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Mice Deficient for the Wild-Type p53-Induced Phosphatase Gene (Wip1) Exhibit Defects in Reproductive Organs, Immune Function, and Cell Cycle Control

, , , , , , , , , & show all
Pages 1094-1105 | Received 08 Aug 2001, Accepted 12 Nov 2001, Published online: 28 Mar 2023

REFERENCES

  • Bulavin, D. V., N. D. Tararova, N. D. Aksenov, V. A. Pospelov, and T. V. Pospelova. 1999. Deregulation of p53/p21Cip1/Waf1 pathway contributes to polyploidy and apoptosis of E1A+cHa-ras transformed cells after gamma-irradiation. Oncogene 18: 5611–5619.
  • Choi, J., E. Appella, and L. A. Donehower. 2000. The structure and expression of the murine wild-type p53-induced phosphatase 1 (Wip1) gene. Genomics 64: 298–306.
  • Cohen, P. 1989. The structure and regulation of protein phosphatases. Annu. Rev. Biochem. 58: 453–508.
  • el-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.
  • Fiscella, M., H. Zhang, S. Fan, K. Sakaguchi, S. Shen, W. E. Mercer, G. F. Vande Woude, P. M. O'Connor, and E. Appella. 1997. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc. Natl. Acad. Sci. USA 94: 6048–6053.
  • Freshney, I. 1983. Culture of animal cells: a manual of basic technique, p. 99–118. Alan R. Liss, Inc., New York, N.Y.
  • Giaccia, A. J., and M. B. Kastan. 1998. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12: 2973–2983.
  • Greenblatt, M. S., W. P. Bennett, M. Hollstein, and C. C. Harris. 1994. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54: 4855–4878.
  • Harvey, M., A. T. Sands, R. S. Weiss, M. E. Hegi, R. W. Wiseman, P. Pantazis, B. C. Giovanella, M. A. Tainsky, A. Bradley, and L. A. Donehower. 1993. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8: 2457–2467.
  • Hess, R. A., D. Bunick, K. H. Lee, J. Bahr, J. A. Taylor, K. S. Korach, and D. B. Lubahn. 1997. A role for oestrogens in the male reproductive system. Nature 390: 509–512.
  • Ko, L. J., and C. Prives. 1996. p53: puzzle and paradigm. Genes Dev. 10: 1054–1072.
  • Levine, A. J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.
  • Lozano, G., and S. J. Elledge. 2000. p53 sends nucleotides to repair DNA. Nature 404: 24–25.
  • Mbawuike, I. N., H. R. Six, T. R. Cate, and R. B. Couch. 1990. Vaccination with inactivated influenza A virus during pregnancy protects neonatal mice against lethal challenge by influenza A viruses representing three subtypes. J. Virol. 64: 1370–1374.
  • Mumby, M. C., and G. Walter. 1993. Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol. Rev. 73: 673–699.
  • Ramirez-Solis, R., J. Rivera-Perez, J. D. Wallace, M. Wims, H. Zheng, and A. Bradley. 1992. Genomic DNA microextraction: a method to screen numerous samples. Anal. Biochem. 201: 331–335.
  • Ramirez-Solis, R., A. C. Davis, and A. Bradley. 1993. Gene targeting in embryonic stem cells. Methods Enzymol. 225: 855–878.
  • Relyea, J. Miller, D. Boggess, and J. Sundberg. 2000. Necropsy methods for laboratory mice: biological characterization of a new mutation, p. 57–89. In J. P. Sundberg and D. Boggess (ed.), Systematic approach to evaluation of mouse mutations. CRC Press, Boca Raton, Fla.
  • Rotter, V., D. Schwartz, E. Almon, N. Goldfinger, A. Kapon, A. Meshorer, L. A. Donehower, and A. J. Levine. 1993. Mice with reduced levels of p53 protein exhibit the testicular giant-cell degenerative syndrome. Proc. Natl. Acad. Sci. USA 90: 9075–9079.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, p. 7.1–7.87. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sherr, C. J. 1998. Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12: 2984–2991.
  • Siliciano, J. D., C. E. Canman, Y. Taya, K. Sakaguchi, E. Appella, and M. B. Kastan. 1997. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11: 3471–3481.
  • Steele, R. J., A. M. Thompson, P. A. Hall, and D. P. Lane. 1998. The p53 tumour suppressor gene. Br. J. Surg. 85: 1460–1467.
  • Suckow, M. A., P. Danneman, and C. Brayton. 2001. The laboratory mouse, p. 113–143. CRC Press, Boca Raton, Fla.
  • Takekawa, M., M. Adachi, A. Nakahata, I. Nakayama, F. Itoh, H. Tsukuda, Y. Taya, and K. Imai. 2000. p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J. 19: 6517–6526.
  • Vogelstein, B., D. Lane, and A. J. Levine. 2000. Surfing the p53 network. Nature 408: 307–310.
  • Ward, J. M., L. Tadesse-Heath, S. N. Perkins, S. K. Chattopadhyay, S. D. Hursting, and H. C. Morse III. 1999. Splenic marginal zone B-cell and thymic T-cell lymphomas in p53-deficient mice. Lab. Investig. 79: 3–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.