21
Views
118
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Loss of Oncogenic H-ras-Induced Cell Cycle Arrest and p38 Mitogen-Activated Protein Kinase Activation by Disruption of Gadd45a

, , &
Pages 3859-3871 | Received 16 Oct 2002, Accepted 11 Mar 2003, Published online: 27 Mar 2023

REFERENCES

  • Adimoolam, S., and J. M. Ford. 2002. p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc. Natl. Acad. Sci. USA 99: 12985–12990.
  • Adler, V., M. R. Pincus, T. Minamoto, S. Y. Fuchs, M. J. Bluth, P. W. Brandt-Rauf, F. K. Friedman, R. C. Robinson, J. M. Chen, X. W. Wang, C. C. Harris, and Z. Ronai. 1997. Conformation-dependent phosphorylation of p53. Proc. Natl. Acad. Sci. USA 94: 1686–1691.
  • Ambrosino, C., and A. R. Nebreda. 2001. Cell cycle regulation by p38 MAP kinases. Biol. Cell 93: 47–51.
  • Amundson, S. A., M. Bittner, Y. D. Chen, J. Trent, P. Meltzer, and A. J. Fornace, Jr. 1999. cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses. Oncogene 18: 3666–3672.
  • Amundson, S. A., A. Patterson, K. T. Do, and A. J. J. Fornace. 2002. A nucleotide excision repair master-switch: p53 regulated coordinate induction of global genomic repair genes. Cancer Biol. Ther. 1: 145–149.
  • Appella, E., and C. W. Anderson. 2001. Post-translational modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem. 268: 2764–2772.
  • Bringold, F., and M. Serrano. 2000. Tumor suppressors and oncogenes in cellular senescence. Exp. Gerontol. 35: 317–329.
  • Bulavin, D., S. I. Saito, M. C. Hollander, K. Sakaguchi, C. W. Anderson, E. Appella, and A. J. Fornace, Jr. 1999. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 18: 6845–6854.
  • Bulavin, D. V., O. N. Demidov, S. Saito, P. Kauraniemi, C. Phillips, S. A. Amundson, C. Ambrosino, G. Sauter, A. R. Nebreda, C. W. Anderson, A. Kallioniemi, A. J. Fornace, Jr., and E. Appella. 2002. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat. Genet. 31: 210–215.
  • Bulavin, D. V., Y. Higashimoto, I. J. Popoff, W. A. Gaarde, V. Basrur, O. Potapova, E. Appella, and A. J. Fornace, Jr. 2001. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411: 102–107.
  • Bulavin, D. V., N. D. Tararova, N. D. Aksenov, V. A. Pospelov, and T. V. Pospelova. 1999. Deregulation of p53/p21Cip1/Waf1 pathway contributes to polyploidy and apoptosis of E1A+cHa-ras transformed cells after gamma-irradiation. Oncogene 18: 5611–5619.
  • Buschmann, T., O. Potapova, A. Bar-Shira, V. N. Ivanov, S. Y. Fuchs, S. Henderson, V. A. Fried, T. Minamoto, D. Alarcon-Vargas, M. R. Pincus, W. A. Gaarde, N. J. Holbrook, Y. Shiloh, and Z. Ronai. 2001. Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol. Cell. Biol. 21: 2743–2754.
  • Carrier, F., M. L. Smith, I. Bae, K. E. Kilpatrick, C. Y. Chen, K. J. Johnson, W. D. Henner, T. Gilmer, M. B. Kastan, and A. J. Fornace, Jr. 1994. Characterization of human Gadd45, a p53-regulated protein. J. Biol. Chem. 269: 32672–32677.
  • Chang, C. I., B. E. Xu, R. Akella, M. H. Cobb, and E. J. Goldsmith. 2002. Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol. Cell 9: 1241–1249.
  • Dmitrieva, N. I., D. V. Bulavin, A. J. Fornace, Jr., and M. B. Burg. 2002. Rapid activation of G2/M checkpoint after hypertonic stress in renal inner medullary epithelial (IME) cells is protective and requires p38 kinase. Proc. Natl. Acad. Sci. USA 99: 184–189.
  • Esteller, M., S. Tortola, M. Toyota, G. Capella, M. A. Peinado, S. B. Baylin, and J. G. Herman. 2000. Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res. 60: 129–133.
  • Ferbeyre, G., E. de Stanchina, A. W. Lin, E. Querido, M. E. McCurrach, G. J. Hannon, and S. W. Lowe. 2002. Oncogenic ras and p53 cooperate to induce cellular senescence. Mol. Cell. Biol. 22: 3497–3508.
  • Gerwins, P., J. L. Blank, and G. L. Johnson. 1997. Cloning of a novel mitogen-activated protein kinase kinase kinase, MEKK4, that selectively regulates the c-Jun amino terminal kinase pathway. J. Biol. Chem. 272: 8288–8295.
  • Graham, S. M., S. M. Oldham, C. B. Martin, J. K. Drugan, I. E. Zohn, S. Campbell, and C. J. Der. 1999. TC21 and Ras share indistinguishable transforming and differentiating activities. Oncogene 18: 2107–2116.
  • Hildesheim, J., D. V. Bulavin, M. R. Anver, W. G. Alvord, M. C. Hollander, L. Vardanian, and A. Fornace, Jr. 2002. Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res. 62: 7305–7315.
  • Hildesheim, J., and A. J. Fornace, Jr. 2002. Gadd45a: an elusive yet attractive candidate gene in pancreatic cancer. Clin. Cancer Res. 8:2475–2479.
  • Ho, G. H., J. E. Calvano, M. Bisogna, Z. Abouezzi, P. I. Borgen, C. Cordon-Cardo, and K. J. van Zee. 2001. Genetic alterations of the p14ARF-hdm2-p53 regulatory pathway in breast carcinoma. Breast Cancer Res. Treat. 65: 225–232.
  • Hollander, M. C., O. Kovalsky, J. M. Salvador, K. E. Kim, A. D. Patterson, D. C. Hairnes, and A. J. Fornace, Jr. 2001. DMBA carcinogenesis in Gadd45a-null mice is associated with decreased DNA repair and increased mutation frequency. Cancer Res. 61: 2487–2491.
  • Hollander, M. C., M. S. Sheikh, D. Bulavin, K. Lundren, L. Augeri-Henmueller, R. Shehee, T. Molinaro, K. Kim, E. Tolosa, J. D. Ashwell, M. D. Rosenberg, Q. Zhan, P. M. Fernández-Salguero, W. F. Morgan, C. X. Deng, and A. J. Fornace, Jr. 1999. Genomic instability in Gadd45a-deficient mice. Nat. Genet. 23: 176–184.
  • Inoue, H., M. Tateno, K. Fujimura-Kamada, G. Takaesu, T. Adachi-Yamada, J. Ninomiya-Tsuji, K. Irie, Y. Nishida, and K. Matsumoto. 2001. A Drosophila MAPKKK, D-MEKK1, mediates stress responses through activation of p38 MAPK. EMBO J. 20: 5421–5430.
  • Jackman, J., I. Alamo, and A. J. Fornace, Jr. 1994. Genotoxic stress confers preferential and coordinate mRNA stability on the five gadd genes. Cancer Res. 54: 5656–5662.
  • Jin, S., M. J. Antinore, F. D. Lung, X. Dong, H. Chao, F. Fan, A. B. Colchagie, P. Blanck, P. P. Roller, A. J. Fornace, Jr., and Q. Zhan. 2000. The GADD45 inhibition of Cdc2 kinase correlates with GADD45-mediated growth suppression. J. Biol. Chem. 275: 16602–16608.
  • Kastan, M. B., Q. Zhan, W. S. el-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and A. J. Fornace, Jr. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71: 587–597.
  • Koch-Paiz, C. A., R. Momenan, S. A. Amundson, E. Lamoreaux, and A. J. Fornace, Jr. 2000. Estimation of relative mRNA content by filter hybridization to a polyuridylic probe. BioTechniques 29: 708–714.
  • Kovalsky, O., F. D. Lung, P. P. Roller, and A. J. Fornace, Jr. 2001. Oligomerization of human gadd45a protein. J. Biol. Chem. 276: 39330–39339.
  • Krimpenfort, P., K. C. Quon, W. J. Mooi, A. Loonstra, and A. Berns. 2001. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413: 83–86.
  • Lavoie, J. N., G. L'Allemain, A. Brunet, R. Muller, and J. Pouyssegur. 1996. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 271: 20608–20616.
  • Li, J., Y. Yang, Y. Peng, R. J. Austin, W. G. van Eyndhoven, K. C. Nguyen, T. Gabriele, M. E. McCurrach, J. R. Marks, T. Hoey, S. W. Lowe, and S. Powers. 2002. Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat. Genet. 31: 133–134.
  • Lin, A. W., M. Barradas, J. C. Stone, L. van Aelst, M. Serrano, and S. W. Lowe. 1998. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12: 3008–3019.
  • Lin, A. W., and S. W. Lowe. 2001. Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation. Proc. Natl. Acad. Sci. USA 98: 5025–5030.
  • Lu, B., H. Yu, C. Chow, B. Li, W. Zheng, R. J. Davis, and R. A. Flavell. 2001. GADD45gamma mediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector T(H)1 cells. Immunity 14: 583–590.
  • Mita, H., J. Tsutsui, M. Takekawa, E. A. Witten, and H. Saito. 2002. Regulation of MTK1/MEKK4 kinase activity by its N-terminal autoinhibitory domain and GADD45 binding. Mol. Cell. Biol. 22: 4544–4555.
  • Oh-Hashi, K., W. Maruyama, and K. Isobe. 2001. Peroxynitrite induces GADD34, 45, and 153 via p38 MAPK in human neuroblastoma, SH-SY5Y cells. Free Radic. Biol. Med. 30: 213–221.
  • Oliner, J. D., K. W. Kinzler, P. S. Meltzer, D. L. George, and B. Vogelstein. 1992. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80–83.
  • Pruitt, K., W. M. Pruitt, G. K. Bilter, J. K. Westwick, and C. J. Der. 2002. Raf-independent deregulation of p38 and JNK kinases are critical for Ras transformation. J. Biol. Chem. 277: 31808–31817.
  • Serrano, M., A. W. Lin, M. E. McCurrach, D. Beach, and S. W. Lowe. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.
  • Sharpless, N. E., N. Bardeesy, K. H. Lee, D. Carrasco, D. H. Castrillon, A. J. Aguirre, E. A. Wu, J. W. Horner, and R. A. DePinho. 2001. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413: 86–91.
  • Shaulian, E., and M. Karin. 1999. Stress-induced JNK activation is independent of Gadd45 induction. J. Biol. Chem. 274: 29595–29598.
  • Smith, M. L., I. T. Chen, Q. Zhan, P. M. O'Connor, and A. J. Fornace, Jr. 1995. Involvement of the p53 tumor suppressor in repair of UV-type DNA damage. Oncogene 10: 1053–1059.
  • Takekawa, M., M. Adachi, A. Nakahata, I. Nakayama, F. Itoh, H. Tsukuda, Y. Taya, and K. Imai. 2000. p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J. 19: 6517–6626.
  • Takekawa, M., F. Posas, and H. Saito. 1997. A human homolog of the yeast Ssk2/Ssk22 MAP kinase kinase kinases, MTK1, mediates stress-induced activation of the p38 and JNK pathways. EMBO J. 16: 4973–4982.
  • Takekawa, M., and H. Saito. 1998. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95: 521–530.
  • Wang, W., J. X. Chen, R. Liao, Q. Deng, J. J. Zhou, S. Huang, and P. Sun. 2002. Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol. Cell. Biol. 22: 3389–3403.
  • Wang, X., M. Gorospe, and N. J. Holbrook. 1999. gadd45 is not required for activation of c-jun N-terminal kinase or p38 during acute stress. J. Biol. Chem. 274: 29599–29602.
  • Wang, X. W., Q. Zhan, J. D. Coursen, M. Khan, H. U. Kontny, L. Liu, M. C. Hollander, P. M. O'Connor, A. J. Fornace, Jr., and C. C. Harris. 1999. Gadd45 induction of a G2-M cell cycle checkpoint. Proc. Natl. Acad. Sci. USA 96: 3706–3711.
  • Wei, W., R. M. Hemmer, and J. M. Sedivy. 2001. Role of p14ARF in replicative and induced senescence of human fibroblasts. Mol. Cell. Biol. 21: 6748–6757.
  • Weston, C. R., D. G. Lambright, and R. J. Davis. 2002. Signal transduction. MAP kinase signaling specificity. Science 296: 2345–2347.
  • Wulf, G. M., Y. C. Liou, A. Ryo, S. W. Lee, and K. P. Lu. 2002. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J. Biol. Chem. 277: 47976–47979.
  • Wysk, M., D. D. Yang, H. T. Lu, R. A. Flavell, and R. J. Davis. 1999. Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for tumor necrosis factor-induced cytokine expression. Proc. Natl. Acad. Sci. USA 96: 3763–3768.
  • Yamasawa, K., Y. Nio, M. Dong, K. Yamaguchi, and M. Itakura. 2002. Clinicopathological significance of abnormalities in Gadd45 expression and its relationship to p53 in human pancreatic cancer. Clin. Cancer Res. 8: 2563–2569.
  • Yang, D., C. Tournier, M. Wysk, H. T. Lu, J. Xu, R. J. Davis, and R. A. Flavell. 1997. Targeted disruption of the MKK4 gene causes embryonic death, inhibition of c-Jun NH2-terminal kinase activation, and defects in AP-1 transcriptional activity. Proc. Natl. Acad. Sci. USA 94: 3004–3009.
  • Yujiri, T., S. Sather, G. R. Fanger, and G. L. Johnson. 1998. Role of MEKK1 in cell survival and activation of JNK and ERK pathways defined by targeted gene disruption. Science 282: 1911–1914.
  • Zacchi, P., M. Gostissa, T. Uchida, C. Salvagno, F. Avolio, S. Volinia, Z. Ronai, G. Blandino, C. Schneider, and S. G. Del. 2002. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419: 853–857.
  • Zhan, Q., M. J. Antinore, X. W. Wang, F. Carrier, M. L. Smith, C. C. Harris, and A. J. Fornace, Jr. 1999. Association with Cdc2 and inhibition of Cdc2/cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18: 2892–2900.
  • Zhan, Q., F. Carrier, and A. J. Fornace, Jr. 1993. Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol. Cell. Biol. 13: 4242–4250.
  • Zhang, X., H. Sun, D. C. Danila, S. R. Johnson, Y. Zhou, B. Swearingen, and A. Klibanski. 2002. Loss of expression of GADD45 gamma, a growth inhibitory gene, in human pituitary adenomas: implications for tumorigenesis. J. Clin. Endocrinol. Metab. 87: 1262–1267.
  • Zheng, H., H. You, X. Z. Zhou, S. A. Murray, T. Uchida, G. Wulf, L. Gu, X. Tang, K. P. Lu, and Z. X. Xiao. 2002. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419: 849–853.
  • Zhu, J., D. Woods, M. McMahon, and J. M. Bishop. 1998. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12: 2997–3007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.