50
Views
75
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Activation of Heat Shock Genes Is Not Necessary for Protection by Heat Shock Transcription Factor 1 against Cell Death Due to a Single Exposure to High Temperatures

, , , , , , , , & show all
Pages 5882-5895 | Received 24 Mar 2003, Accepted 20 May 2003, Published online: 27 Mar 2023

REFERENCES

  • C. N. Adra, P. H. Boer, and M. W. McBurney. 1987. Cloning and expression of the mouse pgk-1 gene and the nucleotide sequence of its promoter. Gene 60: 65–74.
  • Ahn, S. G., P. C. Liu, K. Klyachko, R. I. Morimoto, and D. J. Thiele. 2001. The loop domain of heat shock transcription factor 1 dictates DNA-binding specificity and responses to heat stress. Genes Dev. 15: 2134–2145.
  • Aschoff, J., and U. von Saint Paul. 1973. Brain temperature as related to gross motor activity in the unanesthetized chicken. Physiol. Behav. 10: 529–533.
  • Baler, R., G. Dahl, and R. Voellmy. 1993. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol. Cell. Biol. 13: 2486–2496.
  • Beere, H. M., B. B. Wolf, K. Cain, et al. 2000. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol. 2: 469–475.
  • Bruey, J. M., C. Ducasse, P. Bonniaud, et al. 2000. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell Biol. 2: 645–652.
  • Christians, E., A. A. Davis, S. D. Thomas, and I. J. Benjamin. 2000. Maternal effect of Hsf1 on reproductive success. Nature 407: 693–694.
  • Clos, J., J. T. Westwood., P. B. Becker, S. Wilson, K. Lambert, and C. Wu. 1990. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63: 1085–1097.
  • Galant, R., and S. B. Carroll. 2002. Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415: 910–913.
  • Glover, J. R., and S. Lindquist. 1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94: 73–82.
  • Gossen, M., and H. Bujard. 1992. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89: 5547–5551.
  • Green, M., T. Schuetz, K. Sullivan, and R. E. Kingston. 1995. A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol. Cell. Biol. 15: 3354–3362.
  • Hanna-Rose, W., and U. Hansen. 1996. Active repression mechanisms of eukaryotic transcription repressors. Trends Genet. 12: 229–234.
  • Higuchi, R. 1990. Recombinant PCR, p. 177–183. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (ed.), PCR protocols. Academic Press, Inc., Los Angeles, Calif.
  • Jedlicka, P., M. A. Mortin, and C. Wu. 1997. Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J. 16: 2452–2462.
  • Kallio, M., Y. Chang, M. Manuel, et al. 2002. Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J. 21: 2591–2601.
  • Kawazoe, Y., M. Tanabe, and A. Nakai. 1999. Ubiquitous and cell-specific members of the avian small heat shock protein family. FEBS Lett. 455: 271–275.
  • Kawazoe, Y., T. Tanabe, N. Sasai, K. Nagata, and A. Nakai. 1999. HSF3 is a major heat shock responsive factor during chicken embryonic development. Eur. J. Biochem. 265: 688–697.
  • Lindquist, S. 1986. The heat-shock response. Annu. Rev. Biochem. 55: 1151–1191.
  • Littlefield, O., and H. C. Nelson. 1999. A new use for the ‘wing' of the ′winged' helix-turn-helix motif in the HSF-DNA cocrystal. Nat. Struct. Biol. 6: 464–470.
  • McMillan, D. R., X. Xiao, L. Shao, K. Graves, and I. J. Benjamin. 1998. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J. Biol. Chem. 273: 7523–7528.
  • Morano, K. A., N. Santoro, K. A. Koch, and D. J. Thiele. 1999. A trans-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress. Mol. Cell. Biol. 19: 402–411.
  • Morimoto, R. I. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12: 3788–3796.
  • Nakai, A. 1999. New aspects in the vertebrate heat shock factor system: Hsf3 and Hsf4. Cell Stress Chaperones 4: 86–93.
  • Nakai, A., and X. Ishikawa. 2001. Cell cycle transition under stress conditions controlled by vertebrate heat shock factors. EMBO J. 20: 2885–2895.
  • Nakai, A., Y. Kawazoe, M. Tanabe, K. Nagata, and R. I. Morimoto. 1995. The DNA-binding properties of two heat shock factors, HSF1 and HSF3 are induced in the avian erythroblast cell line HD6. Mol. Cell. Biol. 15: 5168–5178.
  • Nakai, A., and R. I. Morimoto. 1993. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell. Biol. 13: 1983–1997.
  • Nakai, A., M. Suzuki, and M. Tanabe. 2000. Arrest of spermatogenesis in mice expressing an active heat shock transcription factor 1. EMBO J. 19: 1545–1554.
  • Nakai, A., M. Tanabe, Y. Kawazoe, J. Inazawa, R. I. Morimoto, and K. Nagata. 1997. HSF4, a new member of human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell. Biol. 17: 469–481.
  • Norris, C. E., M. A. Brown, E. Hickey, L. A. Weber, and L. E. Hightower. 1997. Low-molecular-weight heat shock proteins in a desert fish (Poeciliopsis lucida): homologs of human Hsp27 and Xenopus Hsp30. Mol. Biol. Evol. 14: 1050–1061.
  • Page, R. D. 1996. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357–358.
  • Pandey, P., A. Saleh, A. Nakazawa, et al. 2000. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 19: 4310–4322.
  • Rabindran, S. K., G. Giorgi, J. Clos, and C. Wu. 1991. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl. Acad. Sci. USA 88: 6906–6910.
  • Ronshaugen, M., N. McGinnis, and W. McGinnis. 2002. Hox protein mutation and macroevolution of the insect body plan. Nature 415: 914–917.
  • Saleh, A., S. M. Srinivasula, L. Balkir, P. D. Robbins, and E. S. Alnemri. 2000. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat. Cell Biol. 2: 476–483.
  • Sarge, K. D., S. P. Murphy, and R. I. Morimoto. 1993. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13: 1392–1407.
  • Sarge, K. D., Z. Zimarino, K. Holm, C. Wu, and R. I. Morimoto. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 5: 1902–1911.
  • Schuetz, T. J., G. J. Gallo, L. Sheldon, P. Tempst, and R. E. Kingston. 1991. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 88: 6911–6915.
  • Shinkai, Y., H. Satoh, N. Takeda, M. Fukuda, E. Chiba, T. Kato, T. Kuramochi, and Y. Araki. 2002. A testicular germ cell-associated serine-threonine kinase, MAK, is dispensable for sperm formation. Mol. Cell. Biol. 22: 3276–3280.
  • Sorger, P. K., and H. R. B. Pelham. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54: 855–864.
  • Tanabe, M., A. Nakai, Y. Kawazoe, and K. Nagata. 1997. Different thresholds in the response of two heat shock transcription factors, HSF1 and HSF3. J. Biol. Chem. 272: 15389–15395.
  • Tanabe, M., Y. Kawazoe, S. Takeda, R. I. Morimoto, K. Nagata, and A. Nakai. 1998. Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO J. 17: 1750–1758.
  • Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.
  • Wiederrecht, G., D. Seto, and C. Parker. 1988. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54: 841–853.
  • Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Biol. 11: 441–469.
  • Xiao, X., X. Zuo, A. A. Davis, D. R. McMillan, B. B. Curry, J. A. Richardson, and I. J. Benjamin. 1999. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 18: 5943–5952.
  • Yagi, T., T. Tokunaga, Y. Furuta, S. Nada, M. Yoshida, T. Tsukada, Y. Saga, N. Takeda, Y. Ikawa, and S. Aizawa. 1993. A novel ES cell line, TT2, with high germline-differentiating potency. Anal. Biochem. 214: 70–76.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.