48
Views
91
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Regulation of Molecular Chaperone Gene Transcription Involves the Serine Phosphorylation, 14-3-3ε Binding, and Cytoplasmic Sequestration of Heat Shock Factor 1

, , &
Pages 6013-6026 | Received 12 Dec 2002, Accepted 13 May 2003, Published online: 27 Mar 2023

REFERENCES

  • Abravaya, K., M. P. Myers, S. P. Murphy, and R. I. Morimoto. 1992. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock protein expression. Genes Dev. 6: 1153–1164.
  • Aitken, A. 1996. 14-3-3 and its possible role in co-ordinating multiple signaling pathways. Trends Cell Biol. 6: 341–347.
  • Aitken, A., S. Howell, D. Jones, J. Madrazo, and Y. Patel. 1995. 14-3-3 α and δ are the phosphorylated forms of Raf-activating 14-3-3 β and ζ. J. Biol. Chem. 270: 5706–5709.
  • Baler, R., G. Dahl, and R. Voellmy. 1993. Activation of human heat shock transcription is accompanied by oligomerization, modification and rapid translocation of heat shock transcription facor HSF-1. Mol. Cell. Biol. 13: 2486–2496.
  • Baler, R., W. J. Welch, and R. Voellmy. 1992. Heat shock protein regulation by nascent polypeptides and denatured proteins: HSP70 as a potential autoregulatory factor. J. Cell Biol. 117: 1151–1159.
  • Bruce, J. L., C. Chen, Y. Xie, R. Zhong, Y. Wang, M. A. Stevenson, and S. K. Calderwood. 1999. Activation of heat shock transcription factor 1 during the G1 phase of the cell cycle. Cell Stress Chaperones 4: 36–45.
  • Brunet, A., F. Kanai, J. Stehn, J. Xu, D. Sarbassova, J. V. Frangioni, S. N. Dalal, J. A. DeCaprio, M. E. Greenberg, and M. B. Yaffe. 2002. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol. 156: 817–828.
  • Cahill, C. M., G. Tzivion, N. Nasrin, S. Oggs, J. Dore, G. Ruvkun, and M. Alexander-Bridges. 2001. Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3 dependent and 14-3-3 independent pathways. J. Biol. Chem. 276: 13402–13410.
  • Cahill, C. M., W. R. Waterman, P. E. Auron, and S. K. Calderwood. 1996. Transcriptional repression of the prointerleukin 1B gene by heat shock factor 1. J. Biol. Chem. 271: 24874–24879.
  • Chen, C., Y. Xie, M. A. Stevenson, P. E. Auron, and S. K. Calderwood. 1997. Heat shock factor 1 represses ras-induced transcriptional activation of the c-fos gene. J. Biol. Chem. 272: 26803–26806.
  • Christians, E., A. A. Davis, S. D. Thomas, and I. J. Benjamin. 2000. Maternal effect of Hsf1 on reproductive success. Nature 407: 693–694.
  • Chu, B., F. Soncin, B. D. Price, M. A. Stevenson, and S. K. Calderwood. 1996. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J. Biol. Chem. 271: 30847–30857.
  • Chu, B., R. Zhong, F. Soncin, M. A. Stevenson, and S. K. Calderwood. 1998. Transcriptional activity of heat shock factor 1 at 37°C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinase Cα and Cζ. J. Biol. Chem. 273: 18640–18646.
  • Cohen, P. 2000. The regulation of protein function by multisite phosphorylation: a 25-year update. Trends Biochem. Sci. 25: 596–601.
  • Craparo, A., R. Freund, and T. A. Gustafson. 1997. 14-3-3ε interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner. J. Biol. Chem. 272: 11663–11669.
  • Dalal, S. N., C. M. Schweitzer, J. Gan, and J. De Caprio. 1999. Cytoplasmic localization of human cdc25c during interphase requires an intact 14-3-3 binding site. Mol. Cell. Biol. 19: 4465–4479.
  • Du, X., J. E. Fox, and S. Pei. 1996. Identification of a binding sequence for the 14-3-3 protein within the cytoplasmic domain of the adhesion receptor, platelet glycoprotein Ibα. J. Biol. Chem. 271: 7362–7367.
  • Dudley, D. T., L. Pang, S. J. Decker, A. J. Bridges, and A. R. Saltiel. 1995. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 92: 7686–7689.
  • Feder, J. H., J. M. Rossi, J. Soloman, N. Soloman, and S. Lindquist. 1992. The consequences of overexpressing Hsp70 in Drosophila cells at normal temperatures. Genes Dev. 6: 1402–1413.
  • Fu, H., R. R. Subramanian, and S. C. Masters. 2000. 14-3-3 proteins; structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40: 617–647.
  • Grammatikakis, N., J. H. Lin, A. Grammatikakis, P. N. Tsichlis, and B. H. Cochran. 1999. p50cdc37 acting in concert with Hsp90 is required for Raf-1 function. Mol. Cell. Biol. 19: 1661–1672.
  • Green, M. T., T. J. Schuetz, E. K. Sullivan, and R. E. Kingston. 1995. A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol. Cell. Biol. 15: 3354–3362.
  • He, B., Y. H. Meng, and N. H. Mivechi. 1998. Glycogen synthase kinase 3b and extracellular signal-regulated protein kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock. Mol. Cell. Biol. 18: 6624–6632.
  • He, H., C. Chen, Y. Xie, A. Asea, and S. K. Calderwood. 2000. HSP70 and heat shock factor 1 cooperate to repress Ras induced activation of the c-fos gene. Cell Stress Chaperones 5: 406–411.
  • Hensold, J. O., C. R. Hunt, S. K. Calderwood, D. E. Houseman, and R. E. Kingston. 1990. DNA binding of heat shock factor to the heat shock element is insufficient for transcriptional activation in murine erythroleukemia cells. Mol. Cell. Biol. 10: 1600–1608.
  • Heydari, A. R., S. You, R. Takahashi, A. Gutsmann-Conrad, K. D. Sarge, and A. Richardson. 2000. Age-related changes in activation of heat shock transcription factor 1 in rat hepatocytes. Exp. Cell Res. 256: 83–93.
  • Holbrook, N., S. G. Carlson, A. M. K. Choi, and J. Fargnoli. 1992. Induction of HSP70 gene expression by the antiproliferative prostaglandin PGA2: a growth-dependent response mediated by the heat shock transcription factor. Mol. Cell. Biol. 12: 1528–1534.
  • Kao, H. Y., A. Verdel, C. C. Tsai, C. Simon, H. Juguilon, and S. Khochbin. 2001. Mechanism for nucleocytoplasmic shuttling of histone deacetylase. J. Biol. Chem. 276: 47496–47507.
  • Kline, M. P., and R. I. Morimoto. 1997. Repression of the heat shock factor1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol. Cell. Biol. 17: 2107–2115.
  • Knauf, U., E. M. Newton, J. Kyriakis, and R. E. Kingston. 1996. Repression of heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev. 10: 2782–2793.
  • Krebs, R. A., and M. E. Feder. 1997. Deleterious consequences of hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress Chaperones 2: 60–71.
  • Kudo, N., N. Matsumori, H. Taoki, D. Fujiwara, E. P. Schreiner, B. Wolff, M. Yoshida, and S. Horinouhhi. 1999. Leptomycin B inactivates CRM1/exportin 1 by a covalent modification at a cysteine residue in the central conserved region. Proc. Natl. Acad. Sci. USA 96: 9112–9117.
  • Kudo, N., B. Wolff, T. Sekimoto, E. P. Schreiner, Y. Yoneda, M. Yanagida, S. Horinouchi, and M. Yoshida. 1998. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242: 540–547.
  • Lopez-Girona, A., B. Furnari, O. Mondesert, and P. Russell. 1999. Nuclear localization of cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 394: 172–175.
  • McMillan, D. R., X. Xiao, L. Shao, K. Graves, and I. J. Benjamin. 1998. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J. Biol. Chem. 273: 7523–7528.
  • Mercier, P. A., N. A. Winegarden, and J. T. Westwood. 1999. Human heat shock factor 1 is predominantly a nuclear protein before and after stress. J. Cell Sci. 112: 2765–2774.
  • Mivechi, N. F., and A. J. Giaccia. 1995. Mitogen-activated protein kinase acts as a negative regulator of the heat shock response in NIH 3T3 cells. Cancer Res. 55: 5512–5519.
  • Morimoto, R. I. 1993. Cells in stress: transcriptional activation of heat shock genes. Science 269: 1409–1410.
  • Muslin, A. J., J. W. Tanner, P. M. Allen, and A. S. Shaw. 1996. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84: 889–897.
  • Newton, E. M., U. Knauf, M. Green, and R. E. Kingston. 1996. The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress. Mol. Cell. Biol. 16: 839–846.
  • Peng, C. Y., P. R. Graves, R. S. Thomas, Z. Wu, A. S. Shaw, and H. Piwnica-Worms. 1997. Mitotic and checkpoint control: regulation of 14-3-3-protein binding by phosphorylation on serine 216. Science 277: 1501–1505.
  • Price, B. D., and S. K. Calderwood. 1991. Calcium is essential for multistep activation of the heat shock factor in permeabilized cells. Mol. Cell. Biol. 11: 3365–3368.
  • Rabindran, S. K., G. Gioorgi, J. Clos, and C. Wu. 1991. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl. Acad. Sci. USA 88: 6906–6910.
  • Rabindran, S. K., R. I. Haroun, J. Clos, J. Wisniewski, and C. Wu. 1993. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259: 230–234.
  • Rittinger, K., J. Budman, J. Xu, S. Volinia, L. C. Cantley, S. J. Smerdon, S. J. Gamblin, and M. B. Yaffe. 1999. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol. Cell 4: 153–166.
  • Sarge, K. D., S. P. Murphy, and R. I. Morimoto. 1993. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13: 1392–1407.
  • Sarge, K. D., V. Zimarino, K. Holm, C. Wu, and R. I. Morimoto. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 5: 1902–1911.
  • Schreiber, E., P. Matthias, M. M. Muller, and W. Schaffner. 1989. Rapid detection of octamer binding proteins with “mini-extracts” prepared from a small number of cells. Nucleic Acids Res. 17: 6419.
  • Schuetz, T. J., G. J. Gallo, L. Sheldon, P. Tempst, and R. E. Kingston. 1991. Isolation of a cDNA for HSF2: evidence for two heat shock factors in humans. Proc. Natl. Acad. Sci. USA 88: 6910–6915.
  • Voellmy, R. 1994. Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein expression in higher eukaryotes. Crit. Rev. Eukaryot. Gene Expr. 4: 357–401.
  • Volloch, V. Z., and M. Y. Sherman. 1999. Oncogenic potential of Hsp70. Oncogene 18: 3648–3651.
  • Wang, X., A. Asea, Y. Xie, E. Kabingu, M. A. Stevenson, and S. K. Calderwood. 2000. RSK2 represses HSF1 activation during heat shock. Cell Stress Chaperones 5: 432–437.
  • Westwood, T., and C. Wu. 1993. Activation of Drosophila heat shock factor: conformational changes associated with monomer-to-trimer transition. Mol. Cell. Biol. 13: 3481–3486.
  • Whitmarsh, A. J., and R. J. Davis. 2000. Regulation of transcription factor function by phosphorylation. Cell Mol. Life Sci. 57: 1172–1183.
  • Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11: 441–469.
  • Xiao, X., X. Zuo, A. A. Davis, R. D. McMillan, B. B. Curry, J. A. Richardson, and I. J. Benjamin. 1999. HSF1 is required for extra-embryonic development, postnatal growth, and protection during inflammatory responses in mice. EMBO J. 18: 5943–5952.
  • Yaffe, M. B., and A. E. Elia. 2001. Phosphoserine/threonine-binding domains. Curr. Opin. Cell Biol. 13: 131–138.
  • Yaffe, M. B., K. Rittinger, S. Volinia, P. R. Caron, A. Aitken, L. H., S. J. Gamblin, S. J. Smerdon, and L. C. Cantley. 1997. The structural basis for 14-3-3: peptide binding specificity. Cell 91: 961–971.
  • Zou, J., Y. Guo, T. Guettouche, D. F. Smith, and R. Voellmy. 1998. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94: 471–480.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.