16
Views
51
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Processing of Double-Strand Breaks Is Involved in the Precise Excision of Paramecium Internal Eliminated Sequences

&
Pages 7152-7162 | Received 17 Apr 2003, Accepted 21 Jul 2003, Published online: 27 Mar 2023

REFERENCES

  • Berger, J. D. 1973. Nuclear differentiation and nucleic acid synthesis in well-fed exconjugants of Paramecium aurelia. Chromosoma 42: 247–268.
  • Bétermier, M., S. Duharcourt, H. Seitz, and E. Meyer. 2000. Timing of developmentally programmed excision and circularization of Paramecium internal eliminated sequences. Mol. Cell. Biol. 20: 1553–1561.
  • Chalker, D. L., and M. C. Yao. 1996. Non-Mendelian, heritable blocks to DNA rearrangement are induced by loading the somatic nucleus of Tetrahymena thermophila with germ line-limited DNA. Mol. Cell. Biol. 16: 3658–3667.
  • Champoux, J. J. 2001. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70: 369–413.
  • Craig, N. L., R. Craigie, M. Gellert, and A. M. Lambowitz. 2002. Mobile DNA II. ASM Press, Washington, D.C.
  • Dawson, A., and D. J. Finnegan. 2003. Excision of the Drosophila mariner transposon Mos1. Comparison with bacterial transposition and V(D)J recombination. Mol. Cell 11: 225–235.
  • Duharcourt, S., A. Butler, and E. Meyer. 1995. Epigenetic self-regulation of developmental excision of an internal eliminated sequence in Paramecium tetraurelia. Genes Dev. 9: 2065–2077.
  • Duharcourt, S., A. M. Keller, and E. Meyer. 1998. Homology-dependent maternal inhibition of developmental excision of internal eliminated sequences in Paramecium tetraurelia. Mol. Cell. Biol. 18: 7075–7085.
  • Garrity, P. A., and B. J. Wold. 1992. Effects of different DNA polymerases in ligation-mediated PCR: enhanced genomic sequencing and in vivo footprinting. Proc. Natl. Acad. Sci. USA 89: 1021–1025.
  • Gratias, A., and M. Bétermier. 2001. Developmentally programmed excision of internal DNA sequences in Paramecium aurelia. Biochimie 83: 1009–1022.
  • Hallet, B., and D. J. Sherratt. 1997. Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol. Rev. 21: 157–178.
  • Jacobs, M. E., and L. A. Klobutcher. 1996. The long and the short of developmental DNA deletion in Euplotes crassus. J. Eukaryot. Microbiol. 43: 442–452.
  • Jahn, C. L., and L. A. Klobutcher. 2002. Genome remodeling in ciliated protozoa. Annu. Rev. Microbiol. 56: 489–520.
  • Jaraczewski, J. W., J. S. Frels, and C. L. Jahn. 1994. Developmentally regulated, low abundance Tec element transcripts in Euplotes crassus—implications for DNA elimination and transposition. Nucleic Acids Res. 22: 4535–4542.
  • Keeney, S., C. N. Giroux, and N. Kleckner. 1997. Meiosis-specific DNA double-strand breaks are catalyzed by Spol1, a member of a widely conserved protein family. Cell 88: 375–384.
  • Klobutcher, L. A., and G. Herrick. 1995. Consensus inverted terminal repeat sequence of Paramecium IESs: resemblance to termini of Tc1-related and Euplotes Tec transposons. Nucleic Acids Res. 23: 2006–2013.
  • Klobutcher, L. A., and G. Herrick. 1997. Developmental genome reorganization in ciliated protozoa: the transposon link. Prog. Nucleic Acid Res. Mol. Biol. 56: 1–62.
  • Klobutcher, L. A., L. R. Turner, and J. LaPlante. 1993. Circular forms of developmentally excised DNA in Euplotes crassus have a heteroduplex junction. Genes Dev. 7: 84–94.
  • Lampe, D. J., M. E. Churchill, and H. M. Robertson. 1996. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 15: 5470–5479.
  • Lampe, D. J., M. E. Churchill, and H. M. Robertson. 1997. A purified mariner transposase is sufficient to mediate transposition in vitro. Erratum. EMBO J. 16: 4153.
  • Mayer, K. M., and J. D. Forney. 1999. A mutation in the flanking 5′-TA-3′ dinucleotide prevents excision of an internal eliminated sequence from the Paramecium tetraurelia genome. Genetics 151: 597–604.
  • Meyer, E., and O. Garnier. 2002. Non-Mendelian inheritance and homology-dependent effects in ciliates. Adv. Genet. 46: 305–337.
  • Meyer, E., and A. M. Keller. 1996. A mendelian mutation affecting mating-type determination also affects developmental genomic rearrangements in Paramecium tetraurelia. Genetics 143: 191–202.
  • Mueller, P. R., and B. Wold. 1989. In vivo footprinting of a muscle specific enhancer by ligation-mediated PCR. Science 246: 780–786.
  • Preer, L. B., G. Hamilton, and J. R. Preer. 1992. Micronuclear DNA from Paramecium tetraurelia: serotype 51 A gene has internally eliminated sequences. J. Protozool. 39: 678–682.
  • Sambrook, J., and D. W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Saveliev, S. V., and M. M. Cox. 1996. Developmentally programmed DNA deletion in Tetrahymena thermophila by a transposition-like reaction pathway. EMBO J. 15: 2858–2869.
  • Saveliev, S. V., and M. M. Cox. 2001. Product analysis illuminates the final steps of IES deletion in Tetrahymena thermophila. EMBO J. 20: 3251–3261.
  • Saveliev, S. V., and M. M. Cox. 1995. Transient DNA breaks associated with programmed genomic deletion events in conjugating cells of Tetrahymena thermophila. Genes Dev. 9: 248–255.
  • Sonneborn, T. M. 1970. Methods in Paramecium research. Methods Cell Physiol. 4: 241–339.
  • Sonneborn, T. M. 1974. Paramecium aurelia, p. 469–594. In R. C. King (ed.), Handbook of genetics: plants, plant viruses and protists, vol. 2. Plenum Press, New York, N.Y.
  • Turlan, C., and M. Chandler. 2000. Playing second fiddle: second-strand processing and liberation of transposable elements from donor DNA. Trends Microbiol. 8: 268–274.
  • Williams, K., T. G. Doak, and G. Herrick. 1993. Developmental precise excision of Oxytricha trifallax telomere-bearing elements and formation of circles closed by a copy of the flanking target duplication. EMBO J. 12: 4593–4601.
  • Yao, M. C., S. Duharcourt, and D. L. Chalker. 2002. Genome-wide rearrangements of DNA in ciliates, p. 730–758. In N. L. Craig, R. Craigie, M. Gellert, and A. M. Lambowitz (ed.), Mobile DNA II. American Society for Microbiology, Washington, D.C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.