21
Views
53
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Prox1 Is a Novel Coregulator of Ff1b and Is Involved in the Embryonic Development of the Zebra Fish Interrenal Primordium

, , , &
Pages 7243-7255 | Received 16 Dec 2002, Accepted 17 Jun 2003, Published online: 27 Mar 2023

REFERENCES

  • Ahmad, W., M. Faiyaz ul Haque, V. Brancolini, H. C. Tsou, S. ul Haque, H. Lam, V. M. Aita, J. Owen, M. deBlaquiere, J. Frank, P. B. Cserhalmi-Friedman, A. Leask, A. J. McGrath, M. Peacocke, M. Ahmad, J. Ott, and A. M. Christiano. 1998. Alopecia universalis associated with a mutation in the human hairless gene. Science 279: 720–724.
  • Aranda, A., and A. Pascual. 2001. Nuclear hormone receptors and gene expression. Physiol. Rev. 81: 1270–1304.
  • Babu, P. S., D. L. Bavers, F. Beuschlein, S. Shah, B. Jeffs, J. L. Jameson, and G. D. Hammer. 2002. Interaction between Dax-1 and steroidogenic factor-1 in vivo: increased adrenal responsiveness to ACTH in the absence of Dax-1. Endocrinology 143: 665–673.
  • Beckstead, R., J. A. Ortiz, C. Sanche, S. N. Prokopenko, P. Chambon, R. Losson, and H. J. Bellen. 2001. Bonus, a Drosophila homolog of TIF1 proteins, interacts with nuclear receptors and can inhibit betaFTZ-F1-dependent transcription. Mol. Cell 7: 753–765.
  • Burke, Z., and G. Oliver. 2002. Prox1 is an early specific maker for the developing liver and pancreas in the mammalian foregut endoderm. Mech. Dev. 118: 147–155.
  • Burris, T. B., W. Guo, and E. R. McCabe. 1996. The gene responsible for adrenal hypoplasia congenita, DAX-1, encodes a nuclear hormone receptor that defines a new class within the superfamily. Recent Prog. Horm. Res. 51: 241–259.
  • Call, K. M., T. Glaser, C. Y. Ito, A. J. Buckler, J. Pelletier, D. A. Haber, E. A. Rose, A. Kral, H. Yeger, W. H. Lewis, C. Jones, and D. E. Housman. 1990. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 60: 509–520.
  • Chai, C., and W. K. Chan. 2000. Developmental expression of a novel Ftz-F1 homologue, ff1b (5A4), in the zebra fish Danio rerio. Mech. Dev. 91: 421–426.
  • Chai, C., Y. W. Liu, and W. K. Chan. 2003. ff1b is required for the development of steroidogenic component of the zebra fish interrenal organ. Dev. Biol. 260: 226–244.
  • Crawford, P. A, J. A. Polish, G. Ganpule, and Y. Sadovsky. 1997. The activation function-2 hexamer of steroidogenic factor-1 is required, but not sufficient, for potentiation by SRC-1. Mol. Endocrinol. 11: 1626–1635.
  • Crawford, P. A., Y. Sadovsky, and J. Milbrandt. 1997. Nuclear receptor steroidogenic factor 1 directs embryonic stem cells towards the steroidogenic lineage. Mol. Cell. Biol. 17: 3997–4006.
  • Crawford, P. A., C. Dorn, Y. Sadovsky, and J. Milbrandt. 1998. Nuclear receptor DAX-1 recruits nuclear receptor corepressor N-CoR to steroidogenic factor 1. Mol. Cell. Biol: 18: 2949–2956.
  • de Santa Barbara, P., N. Bonneaud, B. Boizet, M. Desclozeaux, B. Moniot, P. Sudbeck, G. Scherer, F. Poulat, and P. Berta. 1998. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Mullerian hormone gene. Mol. Cell. Biol. 18: 6653–6665.
  • Deutsch, G., J. Jung, M. Zheng, J. Lora, and K. S. Zaret. 2001. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128: 871–881.
  • Gao, W. 2002. M.Sc. thesis. National University of Singapore, Singapore.
  • Gessler, M., A. Poustka, W. Cavenee, R. L. Neve, S. H. Orkin, and G. A. Bruns. 1990. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 343: 774–778.
  • Gizard, F., B. Lavallee, F. DeWitte, E. Teissier, B. Staels, and D. W. Hum. 2002. The transcriptional regulating protein of 132 kDa (TReP-132) enhances P450scc gene transcription through interaction with steroidogenic factor-1 in human adrenal cells. J. Biol. Chem. 277: 39144–39155.
  • Glass, C. K., and M. G. Rosenfeld. 2000. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14: 121–141.
  • Grassi Milano, E., F. Basari, and C. Chimenti. 1997. Adrenocortical and adrenomedullary homologs in eight species of adult and developing teleosts: morphology, histology, and immunohistochemistry. Gen. Comp. Endocrinol. 108: 483–496.
  • Gritsman, K., J. Zhang, S. Cheng, E. Heckscher, W. S. Talbot, and A. F. Schier. 1999. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97: 121–132.
  • Gubler, M. C., Y. Yang, C. Jeanpierre, S. Barbaux, and P. Niaudet. 1999. WT-1, renal development, and glomerulopahies. Adv. Nephrol. Necker Hosp. 29: 299–315.
  • Guichet, A., J. W. Copeland, M. Erdelyi, D. Hlousek, P. Zavorszky, J. Ho, S. Brown, A. Percival-Smith, H. M. Krause, and A. Ephrussi. 1997. The nuclear receptor homologue Ftz-F1 and the homeodomain protein Ftz are mutually dependent cofactors. Nature 385: 548–352.
  • Halpern, M. E., R. K. Ho, C. Walker, and C. B. Kimmel. 1993. Induction of muscle pioneers and floor plate is distinguished by the zebra fish no tail mutation. Cell 75: 99–111.
  • Halpern, M. E., C. Thisse, R. K. Ho, B. Thisse, B. Riggleman, B. Trevarrow, E. S. Weinberg, J. H. Postlethwait, and C. B. Kimmel. 1995. Cell-autonomous shift from axial to paraxial mesodermal development in zebra fish floating head mutants. Development 121: 4257–4264.
  • Hanley, N. A., W. E. Rainey, D. I. Wilson, S. G. Ball, and K. L. Parker. 2001. Expression profiles of SF-1, DAX1, and CYP17 in the human fetal adrenal gland: potential interactions in gene regulation. Mol. Endocrinol. 15: 57–68.
  • Harris, A. N., and P. L. Mellon. 1998. The basic helix-loop-helix, leucine zipper transcription factor, USF (upstream stimulatory factor), is a key regulator of SF-1 (steroidogenic factor-1) gene expression in pituitary gonadotrope and steroidogenic cells. Mol. Endocrinol. 12: 714–726.
  • Hassan, B., L. Li, K. A. Bremer, W. Chang, J. Pinsonneault, and H. Vaessin. 1997. Prospero is a panneural transcription factor that modulates homeodomain protein activity. Proc. Natl. Acad. Sci. USA 94: 10991–10996.
  • Heery, D. M., E. Kalkhoven, S. Hoare, and M. G. Parker. 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387: 733–736.
  • Hong, Y. K., N. Harvey, Y. H. Noh, V. Schacht, S. Hirakawam, M. Detmar, and G. Oliver. 2002. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev. Dyn. 225: 351–357.
  • Hoyle, C., V. Narvaez, G. Alldus, R. Lovell-Badge, and A. Swain. 2002. Dax1 expression is dependent on steroidogenic factor 1 in the developing gonad. Mol. Endocrinol. 16: 747–756.
  • Ikeda, Y., A. Swain, T. J. Weber, K. E. Hentges, E. Zanaria, E. Lalli, K. T. Tamai, P. Sassone-Corsi, R. Lovell-Badge, G. Camerino, and K. L. Parker. 1996. Steroidogenic factor 1 and Dax-1 colocalize in multiple cell lineages: potential links in endocrine development. Mol. Endocrinol. 10: 1261–1272.
  • Keegan, C. E., and G. D. Hammer. 2002. Recent insights into organogenesis of the adrenal cortex. Trends Endocrinol. Metab. 13: 200–208.
  • Kimmel, C. B., W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling. 1995. Stages of embryonic development of the zebra fish. Dev. Dyn. 203: 253–310.
  • Korzh, S., A. Emelyanov, and V. Korozh. 2001. Developmental analysis of ceruloplasmin gene and liver formation in zebra fish. Mech. Dev. 103: 137–139.
  • Kreidberg, J. A., H. Sariola, J. M. Loring, M. Maeda, J. Pelletier, D. Housman, and R. Jaenisch. 1993. WT-1 is required for early kidney development. Cell 744: 679–691.
  • Lee S. L., Y. Sadovsky A. H. Swirnoff, J. A. Polish, P. Goda, G. Gavrilina, and J. Milbrandt. 1996. Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1). Science 273: 1219–1221.
  • Lengler, J., E. Krausz, S. Tomarev, A. Prescott, R. A. Quinlan, and J. Graw. 2001. Antagonistic action of Six3 and Prox1 at the gamma-crystallin promoter. Nucleic Acids Res. 29: 515–526.
  • Li, L. A., D. Lala, and B. C. Chung. 1998. Function of steroidogenic factor 1 (SF1) ligand-binding domain in gene activation and interaction with AP1. Biochem. Biophys. Res. Commun. 250: 318–320.
  • Li, L. A., E. F. Chiang, J. C. Chen, N. C. Hsu, Y. J. Chen, and B. C. Chung. 1999. Function of steroidogenic factor 1 domains in nuclear localization, transactivation, and interaction with transcription factor TFIIB and c-Jun. Mol. Endocrinol. 13: 1588–1598.
  • Lin, W. W., H. W. Wang, C. Sum, D. Liu, C. L. Hew, and B. C. Chung. 2000. Zebrafish ftz-f1 gene has two promoters, is alternatively spliced, and is expressed in digestive organs. Biochem. J. 348: 439–446.
  • Liu, D., M. Chandy, S. K. Lee, Y. Le Drean, H. Ando, F. Xiong, L. E. Woon, and C. L. Hew. 2000. A zebra fish Ftz-F1 (Fushi tarazu factor 1) homologue requires multiple subdomains in the D and E regions for its transcriptional activity. J. Biol. Chem. 275: 16758–16766.
  • Luo, X., Y. Ikeda, and K. L. Parker. 1994. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77: 481–490.
  • McKenna, N. J., and B. W. O'Malley. 2002. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108: 465–474.
  • Miller, J. H. 1992. A short course in bacterial genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Moore, A. W., L. McInnes, J. Kreidberg, N. D. Hastie, and A. Schedl. 1999. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126: 1845–1857.
  • Muscatelli, F., T. M. Strom, A. P. Walker, E. Zanaria, D. Recan, A. Meindl, B. Bardoni, S. Guioli, G. Zehetner, W. Rabl, H. P. Schwartz, J.-C. Kaplan, G. Camerino, T. Meitinger, and A. P. Monaco. 1994. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372: 672–676.
  • Nachtigal, M. W., Y. Hirokawa, D. L. Enyeart-VanHouten, J. N. Flanagan, G. D. Hammer, and H. A. Ingraham. 1998. Wilms' tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell 93: 445–454.
  • Nomura, M., H. Nawata, and K. Morohash. 1996. Autoregulatory loop in the regulation of the mammalian ftz-f1 gene. J. Biol. Chem. 271: 8243–8249.
  • Odenthal, J., P. Haffter, E. Vogelsang, M. Brand, F. J. van Eeden, M. Furutani-Seiki, M. Granato, M. Hammerschmidt, C. P. Heisenberg, Y. J. Jiang, D. A. Kane, R. N. Kelsh, M. C. Mullins, R. M. Warga, M. L. Allende, E. S. Weinberg, and C. Nusslein-Volhard. 1996. Mutations affecting the formation of the notochord in the zebra fish, Danio rerio. Development 123: 103–115.
  • Oliver, G., B. Sosa-Pineda, S. Geisendorf, E. P. Spana, C. Q. Doe, and P. Gruss. 1993. Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech. Dev. 44: 13–16.
  • Ou, Q., J. F. Mouillet, X. Yan, C. Dorn, P. A. Crawford, and Y. Sadovsky. 2001. The DEAD box protein DP103 is a regulator of steroidogenic factor-1. Mol. Endocrinol. 15: 1569–1579.
  • Parker, K. L. 1998. The roles of steroidogenic factor 1 in endocrine development and function. Mol. Cell. Endocrinol. 145: 15–20.
  • Parker, K. L., and B. P. Schimmer. 2001. Genetics of the development and function of the adrenal cortex. Rev. Endocr. Metab. Disord. 2: 245–252.
  • Panteleyev A. A., R. Paus, W. Ahmad, J. P. Sundberg, and A. M. Christiano. 1998. Molecular and functional aspects of the hairless (hr) gene in laboratory rodents and humans. Exp. Dermatol. 7: 249–267.
  • Petrova, T. V., T. Makinen, T. P. Makela, J. Saarela, I. Virtanen, R. E. Ferrell, D. N. Finegold, D. Kerjaschki, S. Yla-Herttuala, and K. Alitalo. 2002. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 21: 4593–4599.
  • Potter, G. B., G. M. Beaudoin III, C. L. DeRenzo, J. M. Zarach, S. H. Chen, and C. C. Thompson. 2001. The hairless gene mutated in congenital hair loss disorders encodes a novel nuclear receptor corepressor. Genes Dev. 15: 2687–2701.
  • Robyr, D., A. P. Wolffe, and W. Wahli. 2000. Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol. Endocrinol. 14: 329–347.
  • Roy, S., C. Wolff, and P. W. Ingham. 2001. The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebra fish embryo. Genes Dev. 15: 1563–1576.
  • Sadovsky, Y., P. A. Crawford, K. G. Woodson, J. A. Polish, M. A. Clements, L. M. Tourtellotte, K. Simburger, and J. Milbrandt. 1995. Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc. Natl. Acad. Sci. USA 92: 10939–10943.
  • Schier, A. F., S. C. Neuhauss, M. Harvey, J. Malicki, L. Solnica-Krezel, D. Y. Stainier, F. Zwartkruis, S. Abdelilah, D. L. Stemple, Z. Rangini, H. Yang, and W. Driever. 1996. Mutations affecting the development of the embryonic zebra fish brain. Development 123: 165–178.
  • Schier, A. F., S. C. Neuhauss, K. A. Helde, W. S. Talbot, and W. Driever. 1997. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebra fish and interacts with no tail. Development 124: 327–342.
  • Schulte-Merker, S., F. J. van Eeden, M. E. Halpern, C. B. Kimmel, and C. Nusslein-Volhard. 1994. no tail (ntl) is the zebra fish homologue of the mouse T (Brachyury) gene. Development 120: 1009–1015.
  • Schwartz, C. J., H. M. Sampson, D. Hlousek, A. Percival-Smith, J. W. Copeland, A. J. Simmonds, and H. M. Krause. 2001. FTZ-Factor 1 and Fushi tarazu interact via conserved nuclear receptor and coactivator motifs. EMBO J. 20: 510–519.
  • Shen, W. H., C. C. Moore, Y. Ikeda, K. L. Parker, and H. A. Ingraham. 1994. Nuclear receptor steroidogenic factor 1 regulates the mullerian inhibiting substance gene: a link to the sex determination cascade. Cell 77: 651–661.
  • Shen, H. C., and H. A. Ingraham. 2002. Regulation of the orphan nuclear receptor steroidogenic factor 1 by Sox proteins. Mol. Endcrinol. 16: 529–540.
  • Shinoda, K., H. Lei, H. Yoshii, M. Nomura, M. Nagano, H. Shiba, H. Sasaki, Y. Osawa, Y. Ninomiya, O. Niwa, K.-I. Morohashi, and E. Li. 1995. Developmental defects of the ventromedial hypothalamic nucleus and pituitary gonadotroph in the Ftz-F1 disrupted mice. Dev. Dyn. 204: 22–29.
  • Sosa-Pineda, B., J. T. Wigle, and G. Loiver. 2000. Hepatocyte migration during liver development required Prox1. Nat. Genet. 25: 254–255.
  • Sugawara, T., S. Abe, N. Sakuragi, Y. Fujimoto, E. Nomura, K. Fujieda, M. Saito, and S. Fujimoto. 2001. RIP 140 modulates transcription of the steroidogenic acute regulatory protein gene through interactions with both SF-1 and DAX-1. Endocrinology 142: 3570–3577.
  • Suzuki, T., H. Kawasaki, R. T. Yu, H. Ueda, and K. Umesono. 2001. Segmentation gene product Fushi tarazu is an LXXLL motif-dependent coactivator for orphan receptor FTZ-F1. Proc. Natl. Acad. Sci. USA 98: 12403–12408.
  • Swain, A., E. Zanaria, A. Hacker, R. Lovell-Badge, and G. Camerino. 1996. Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat. Genet. 12: 404–409.
  • Talbot, W. S., B. Trevarrow, M. E., Halpern, A. E. Melby, G. Farr, J. H. Postlethwait, T. Jowett, C. B. Kimmel, and D. Kimelman. 1995. A homeobox gene essential for zebra fish notochord development. Nature 378: 150–157.
  • Tremblay, J. J., C. Lanctot, and J. Drouin. 1998. The pan-pituitary activator of transcription, Ptx1 (pituitary homeobox 1), acts in synergy with SF-1 and Pit1 and is an upstream regulator of the Lim-homeodomain gene Lim3/Lhx3. Mol. Endocrinol. 12: 428–441.
  • Tremblay, J. J., and R. S. Viger. 1999. Transcription factor GATA-4 enhances Mullerian inhibiting substance gene transcription through a direct interaction with the nuclear receptor SF-1. Mol. Endocrinol. 13: 1388–1401.
  • Ueda, H., G. C. Sun, T. Murata, and S. Hirose. 1992. A novel DNA-binding motif abuts the zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein. Mol. Cell. Biol. 12: 5667–5672.
  • Westerfield, M. 2000. The zebra fish book, 4th ed. University of Oregon Press, Eugene.
  • Wigle, J. T., K. Chowdhury, P. Gruss, and G. Oliver. 1999. Prox1 function is crucial for mouse lens-fibre elongation. Nat. Genet. 21: 318–322.
  • Wigle, J. T., and G. Oliver. 1999. Prox1 function is required for the development of the murine lymphatic system. Cell 98: 769–778.
  • Wigle, J. T., N. Harvey, M. Detmar, I. Lagutina, G. Grosveld, M. D. Gunn, D. G. Jackson, and G. Oliver. 2002. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21: 1505–1513.
  • Wilson, T. E., T. J. Fahrner, and J. Milbrandt. 1993. The orphan receptors NGFI-B and steroidogenic factor 1 establish monomer binding as a third paradigm of nuclear receptor-DNA interaction. Mol. Cell. Biol. 13: 5794–5804.
  • Yu, Y., W. Li, K. Su, M. Yussa, W. Han, N. Perrimon, and L. Pick. 1997. The nuclear hormone receptor Ftz-F1 is a cofactor for the Drosophila homeodomain protein Ftz. Nature 385: 552–555.
  • Yu, R. N., M. Ito, T. L. Saunders, S. A. Camper, and J. L. Jameson. 1998. Role of Ahch in gonadal development and gametogenesis. Nat. Genet. 20: 353–357.
  • Zanaria, E., F. Muscatelli, B. Bardoni, T. M. Strom, S. Guioli, W. Guo, E. Lalli, C. Moser, A. P. Walker, E. R. McCabe, T. Meitinger, A. P. Monaco, P. Sassone-Corsi, and G. Camerino. 1994. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 372: 635–641.
  • Zhang, J., W. S. Talbot, and A. F. Schier. 1998. Positional cloning identifies zebra fish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92: 241–251.
  • Zinovieva, R. D., M. K. Duncan, T. R. Johnson, R. Torres, M. H. Polymeropoulos, and S. I. Tomarev. 1996. Structure and chromosomal localization of the human homeobox gene Prox1. Genomics 35: 517–522.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.