52
Views
123
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Genome-Wide Occupancy Profile of the RNA Polymerase III Machinery in Saccharomyces cerevisiae Reveals Loci with Incomplete Transcription Complexes

&
Pages 4118-4127 | Received 14 Nov 2003, Accepted 29 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Burnol, A. F., Margottin F., Huet J., Almouzni G., Prioleau M. N., Mechali M., and Sentenac A.. 1993. TFIIIC relieves repression of U6 snRNA transcription by chromatin. Nature 362:475–477.
  • Cliften, P., Sudarsanam P., Desikan A., Fulton L., Fulton B., Majors J., Waterston R., Cohen B. A., and Johnston M.. 2003. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:71–76.
  • Colbert, T., Lee S., Schimmack G., and Hahn S.. 1998. Architecture of protein and DNA contacts within the TFIIIB-DNA complex. Mol. Cell. Biol. 18:1682–1691.
  • Dammann, R., Lucchini R., Koller T., and Sogo J. M.. 1993. Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res. 21:2331–2338.
  • Davis, J. L., Kunisawa R., and Thorner J.. 1992. A presumptive helicase (MOT1 gene product) affects gene expression and is required for viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 12:1879–1892.
  • Dieci, G., Percudani R., Giuliodori S., Bottarelli L., and Ottonello S.. 2000. TFIIIC-independent in vitro transcription of yeast tRNA genes. J. Mol. Biol. 299:601–613.
  • Galli, G., Hofstetter H., and Birnstiel M. L.. 1981. Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature 294:626–631.
  • Geiduschek, E. P., and Kassavetis G. A.. 2001. The RNA polymerase III transcription apparatus. J. Mol. Biol. 310:1–26.
  • Goffeau, A., Barrell B. G., Bussey H., Davis R. W., Dujon B., Feldmann H., Galibert F., Hoheisel J. D., Jacq C., Johnston M., Louis E. J., Mewes H. W., Murakami Y., Philippsen P., Tettelin H., and Oliver S. G.. 1996. Life with 6000 genes. Science 274:563–567.
  • Hani, J., and Feldmann H.. 1998. tRNA genes and retroelements in the yeast genome. Nucleic Acids Res. 26:689–696.
  • Harismendy, O., Gendrel C. G., Soularue P., Gidrol X., Sentenac A., Werner M., and Lefebvre O.. 2003. Genome-wide location of yeast RNA polymerase III transcription machinery. EMBO J. 22:4738–4747.
  • Heard, D. J., Kiss T., and Filipowicz W.. 1993. Both Arabidopsis TATA-binding protein (TBP) isoforms are functionally identical in RNA polymerase II and III transcription in plant cells: evidence for gene-specific changes in DNA binding specificity of TBP. EMBO J. 12:3519–3528.
  • Hermann-Le Denmat, S., Werner M., Sentenac A., and Thuriaux P.. 1994. Suppression of yeast RNA polymerase III mutations by FHL1, a gene coding for a fork head protein involved in rRNA processing. Mol. Cell. Biol. 14:2905–2913.
  • Issel-Tarver, L., Christie K. R., Dolinski K., Andrada R., Balakrishnan R., Ball C. A., Binkley G., Dong S., Dwight S. S., Fisk D. G., Harris M., Schroeder M., Sethuraman A., Tse K., Weng S., Botstein D., and Cherry J. M.. 2002. Saccharomyces Genome Database. Methods Enzymol. 350:329–346.
  • Iyer, V., and Struhl K.. 1996. Absolute mRNA levels and transcriptional initiation rates in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:5208–5212.
  • Iyer, V. R., Horak C. E., Scafe C. S., Botstein D., Snyder M., and Brown P. O.. 2001. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538.
  • Joazeiro, C. A., Kassavetis G. A., and Geiduschek E. P.. 1994. Identical components of yeast transcription factor IIIB are required and sufficient for transcription of TATA box-containing and TATA-less genes. Mol. Cell. Biol. 14:2798–2808.
  • Kaplun, L., Ivantsiv Y., Kornitzer D., and Raveh D.. 2000. Functions of the DNA damage response pathway target Ho endonuclease of yeast for degradation via the ubiquitin-26S proteasome system. Proc. Natl. Acad. Sci. USA 97:10077–10782.
  • Kellis, M., Patterson N., Endrizzi M., Birren B., and Lander E. S.. 2003. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254.
  • Kuras, L., Kosa P., Mencia M., and Struhl K.. 2000. TAF-containing and TAF-independent forms of transcriptionally active TBP in vivo. Science 288:1244–1248.
  • Kuras, L., and Struhl K.. 1999. Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 399:609–612.
  • Li, X.-Y., Bhaumik S. R., and Green M. R.. 2000. Distinct classes of yeast promoters revealed by differential TAF recruitment. Science 288:1242–1244.
  • Li, X.-Y., Virbasius A., Zhu X., and Green M. R.. 1999. Enhancement of TBP binding by activators and general transcription factors. Nature 399:605–609.
  • Lowe, T. M., and Eddy S. R.. 1999. A computational screen for methylation guide snoRNAs in yeast. Science 283:1168–1171.
  • Lowe, T. M., and Eddy S. R.. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955–964.
  • McCutcheon, J. P., and Eddy S. R.. 2003. Computational identification of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics. Nucleic Acids Res. 31:4119–4128.
  • Mencia, M., Moqtaderi Z., Geisberg J. V., Kuras L., and Struhl K.. 2002. Activator-specific recruitment of TFIID and regulation of ribosomal protein genes in yeast. Mol. Cell 9:823–833.
  • Moir, R. D., Puglia K. V., and Willis I. M.. 2002. Autoinhibition of TFIIIB70 binding by the tetratricopeptide repeat-containing subunit of TFIIIC. J. Biol. Chem. 277:694–701.
  • Moir, R. D., Puglia K. V., and Willis I. M.. 2002. A gain-of-function mutation in the second tetratricopeptide repeat of TFIIIC131 relieves autoinhibition of Brf1 binding. Mol. Cell. Biol. 22:6131–6141.
  • Moir, R. D., Puglia K. V., and Willis I. M.. 2000. Interactions between the tetratricopeptide repeat-containing transcription factor TFIIIC131 and its ligand, TFIIIB70. Evidence for a conformational change in the complex. J. Biol. Chem. 275:26591–26598.
  • Olivas, W. M., Muhlrad D., and Parker R.. 1997. Analysis of the yeast genome: identification of new non-coding and small ORF-containing RNAs. Nucleic Acids Res. 25:4619–4625.
  • Percudani, R., Pavesi A., and Ottonello S.. 1997. Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J. Mol. Biol. 268:322–330.
  • Reid, J. L., Moqtaderi Z., and Struhl K.. 2004. Eaf3 regulates the global pattern of histone acetylation in Saccharomyces cerevisiae. Mol. Cell. Biol. 24:757–764.
  • Roberts, D. N., Stewart A. J., Huff J. T., and Cairns B. R.. 2003. The RNA polymerase III transcriptome revealed by genome-wide localization and activity-occupancy relationships. Proc. Natl. Acad. Sci. USA 100:14695–14700.
  • Roth, F. P., Hughes J. D., Estep P. W., and Church G. M.. 1998. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat. Biotechnol. 16:939–945.
  • Schramm, L., and Hernandez N.. 2002. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 16:2593–2620.
  • Shah, S. M., Kumar A., Geiduschek E. P., and Kassavetis G. A.. 1999. Alignment of the B“ subunit of RNA polymerase III transcription factor IIIB in its promoter complex. J. Biol. Chem. 274:28736–28744.
  • Stunkel, W., Kober I., and Seifart K. H.. 1997. A nucleosome positioned in the distal promoter region activates transcription of the human U6 gene. Mol. Cell. Biol. 17:4397–4405.
  • Velculescu, V. E., Zhang L., Zhou W., Vogelstein J., Basrai M. A., Bassett D. E., Hieter P., Vogelstein B., and Kinzler K. W.. 1997. Characterization of the yeast transcriptome. Cell 88:243–251.
  • Whitehall, S. K., Kassavetis G. A., and Geiduschek E. P.. 1995. The symmetry of the yeast U6 RNA gene's TATA box and the orientation of the TATA-binding protein in yeast TFIIIB. Genes Dev. 9:2974–2985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.