91
Views
111
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Molecular Scaffold KSR1 Regulates the Proliferative and Oncogenic Potential of Cells

&
Pages 4407-4416 | Received 12 Dec 2003, Accepted 29 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Alessi, D. R., Andjelkovic M., Caudwell B., Cron P., Morrice N., Cohen P., and Hemmings B. A.. 1996. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15:6541–6551.
  • Anselmo, A. N., Bumeister R., Thomas J. M., and White M. A.. 2002. Critical contribution of linker proteins to Raf kinase activation. J. Biol. Chem. 277:5940–5943.
  • Bray, D., and Lay S.. 1997. Computer-based analysis of the binding steps in protein complex formation. Proc. Natl. Acad. Sci. USA 94:13493–13498.
  • Brennan, J. A., Volle D. J., Chaika O. V., and Lewis R. E.. 2002. Phosphorylation regulates the nucleocytoplasmic distribution of kinase suppressor of Ras. J. Biol. Chem. 277:5369–5377.
  • Burack, W. R., and Shaw A. S.. 2000. Signal transduction: hanging on a scaffold. Curr. Opin. Cell Biol. 12:211–216.
  • Cacace, A. M., Michaud N. R., Therrien M., Mathes K., Copeland T., Rubin G. M., and Morrison D. K.. 1999. Identification of constitutive and Ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol. Cell. Biol. 19:229–240.
  • Chang, L., and Karin M.. 2001. Mammalian MAP kinase signalling cascades. Nature 410:37–40.
  • Denouel-Galy, A., Douville E. M., Warne P. H., Papin C., Laugier D., Calothy G., Downward J., and Eychene A.. 1998. Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr. Biol. 8:46–55.
  • de Ruiter, N. D., Wolthuis R. M., van Dam H., Burgering B. M., and Bos J. L.. 2000. Ras-dependent regulation of c-Jun phosphorylation is mediated by the Ral guanine nucleotide exchange factor-Ral pathway. Mol. Cell. Biol. 20:8480–8488.
  • Dickens, M., Rogers J. S., Cavanagh J., Raitano A., Xia Z., Halpern J. R., Greenberg M. E., Sawyers C. L., and Davis R. J.. 1997. A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 277:693–696.
  • Elion, E. A. 1998. Routing MAP kinase cascades. Science 281:1625–1626.
  • Ferrell, J. E., Jr. 2000. What do scaffold proteins really do? Sci. STKE 2000:PE1.
  • Gille, H., and Downward J.. 1999. Multiple Ras effector pathways contribute to G(1) cell cycle progression. J. Biol. Chem. 274:22033–22040.
  • Hamad, N. M., Elconin J. H., Karnoub A. E., Bai W., Rich J. N., Abraham R. T., Der C. J., and Counter C. M.. 2002. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev. 16:2045–2057.
  • Heinrich, R., Neel B. G., and Rapoport T. A.. 2002. Mathematical models of protein kinase signal transduction. Mol. Cell 9:957–970.
  • Jones, S. M., and Kazlauskas A.. 2001. Growth-factor-dependent mitogenesis requires two distinct phases of signalling. Nat. Cell Biol. 3:165–172.
  • Joneson, T., Fulton J. A., Volle D. J., Chaika O. V., Bar-Sagi D., and Lewis R. E.. 1998. Kinase suppressor of Ras inhibits the activation of extracellular ligand-regulated (ERK) mitogen-activated protein (MAP) kinase by growth factors, activated Ras, and Ras effectors. J. Biol. Chem. 273:7743–7748.
  • Khosravi-Far, R., White M. A., Westwick J. K., Solski P. A., Chrzanowska-Wodnicka M., Van Aelst L., Wigler M. H., and Der C. J.. 1996. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol. Cell. Biol. 16:3923–3933.
  • Kornfeld, K., Hom D. B., and Horvitz H. R.. 1995. The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell 83:903–913.
  • Levchenko, A., Bruck J., and Sternberg P. W.. 2000. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl. Acad. Sci. USA 97:5818–5823.
  • Lozano, J., Xing R., Cai Z., Jensen H. L., Trempus C., Mark W., Cannon R., and Kolesnick R.. 2003. Deficiency of kinase suppressor of Ras1 prevents oncogenic Ras signaling in mice. Cancer Res. 63:4232–4238.
  • Marshall, C. J. 1995. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185.
  • Michaud, N. R., Therrien M., Cacace A., Edsall L. C., Spiegel S., Rubin G. M., and Morrison D. K.. 1997. KSR stimulates Raf-1 activity in a kinase-independent manner. Proc. Natl. Acad. Sci. USA 94:12792–12796.
  • Morrison, D. K. 2001. KSR: a MAPK scaffold of the Ras pathway? J. Cell Sci. 114:1609–1612.
  • Muller, J., Cacace A. M., Lyons W. E., McGill C. B., and Morrison D. K.. 2000. Identification of B-KSR1, a novel brain-specific isoform of KSR1 that functions in neuronal signaling. Mol. Cell. Biol. 20:5529–5539.
  • Muller, J., Ory S., Copeland T., Piwnica-Worms H., and Morrison D. K.. 2001. C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol. Cell 8:983–993.
  • Murphy, L. O., Smith S., Chen R. H., Fingar D. C., and Blenis J.. 2002. Molecular interpretation of ERK signal duration by immediate early gene products. Nat. Cell Biol. 4:556–564.
  • Nguyen, A., Burack W. R., Stock J. L., Kortum R., Chaika O. V., Afkarian M., Muller W. J., Murphy K. M., Morrison D. K., Lewis R. E., McNeish J., and Shaw A. S.. 2002. Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol. Cell. Biol. 22:3035–3045.
  • Ohmachi, M., Rocheleau C. E., Church D., Lambie E., Schedl T., and Sundaram M. V.. 2002. C. elegans ksr-1 and ksr-2 have both unique and redundant functions and are required for MPK-1 ERK phosphorylation. Curr. Biol. 12:427–433.
  • Pouyssegur, J., Volmat V., and Lenormand P.. 2002. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem. Pharmacol. 64:755–763.
  • Roy, F., Laberge G., Douziech M., Ferland-McCollough D., and Therrien M.. 2002. KSR is a scaffold required for activation of the ERK/MAPK module. Genes Dev. 16:427–438.
  • Sabbagh, W., Jr., Flatauer L. J., Bardwell A. J., and Bardwell L.. 2001. Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation. Mol. Cell 8:683–691.
  • Schaeffer, H. J., Catling A. D., Eblen S. T., Collier L. S., Krauss A., and Weber M. J.. 1998. MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 281:1668–1671.
  • Schaeffer, H. J., and Weber M. J.. 1999. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19:2435–2444.
  • Scott, K., and Zuker C. S.. 1998. Assembly of the Drosophila phototransduction cascade into a signalling complex shapes elementary responses. Nature 395:805–808.
  • Stewart, S., Sundaram M., Zhang Y. P., Lee J. Y., Han M., and Guan K. L.. 1999. Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol. Cell. Biol. 19:5523–5534.
  • Sugimoto, T., Stewart S., Han M., and Guan K. L.. 1998. The kinase suppressor of Ras (KSR) modulates growth factor and Ras signaling by uncoupling Elk-1 phosphorylation from MAP kinase activation. EMBO J. 17:1717–1727.
  • Sundaram, M., and Han M.. 1995. The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell 83:889–901.
  • Teis, D., Wunderlich W., and Huber L. A.. 2002. Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev. Cell 3:803–814.
  • Therrien, M., Chang H. C., Solomon N. M., Karim F. D., Wassarman D. A., and Rubin G. M.. 1995. KSR, a novel protein kinase required for RAS signal transduction. Cell 83:879–888.
  • Therrien, M., Michaud N. R., Rubin G. M., and Morrison D. K.. 1996. KSR modulates signal propagation within the MAPK cascade. Genes Dev. 10:2684–2695.
  • Todaro, G. J., and Green H.. 1963. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17:299–313.
  • Webb, C. P., Van Aelst L., Wigler M. H., and Woude G. F.. 1998. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc. Natl. Acad. Sci. USA 95:8773–8778.
  • White, M. A., Nicolette C., Minden A., Polverino A., Van Aelst L., Karin M., and Wigler M. H.. 1995. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80:533–541.
  • White, M. A., Vale T., Camonis J. H., Schaefer E., and Wigler M. H.. 1996. A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J. Biol. Chem. 271:16439–16442.
  • Whitmarsh, A. J., Cavanagh J., Tournier C., Yasuda J., and Davis R. J.. 1998. A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281:1671–1674.
  • Whitmarsh, A. J., and Davis R. J.. 1998. Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem. Sci. 23:481–485.
  • Xing, H., Kornfeld K., and Muslin A. J.. 1997. The protein kinase KSR interacts with 14-3-3 protein and Raf. Curr. Biol. 7:294–300.
  • Yang, J. J., Kang J. S., and Krauss R. S.. 1998. Ras signals to the cell cycle machinery via multiple pathways to induce anchorage-independent growth. Mol. Cell. Biol. 18:2586–2595.
  • Yasuda, J., Whitmarsh A. J., Cavanagh J., Sharma M., and Davis R. J.. 1999. The JIP group of mitogen-activated protein kinase scaffold proteins. Mol. Cell. Biol. 19:7245–7254.
  • Yeung, K., Seitz T., Li S., Janosch P., McFerran B., Kaiser C., Fee F., Katsanakis K. D., Rose D. W., Mischak H., Sedivy J. M., and Kolch W.. 1999. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401:173–177.
  • Yu, W., Fantl W. J., Harrowe G., and Williams L. T.. 1998. Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr. Biol. 8:56–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.