17
Views
44
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Disruption of CCTβ2 Expression Leads to Gonadal Dysfunction

, , , , , & show all
Pages 4720-4733 | Received 21 Oct 2003, Accepted 07 Mar 2004, Published online: 27 Mar 2023

REFERENCES

  • Araki, W., and Wurtman R. J.. 1997. Control of membrane phosphatidylcholine biosynthesis by diacylglycerol levels in neuronal cells undergoing neurite outgrowth. Proc. Natl. Acad. Sci. USA 94:11946–11950.
  • Arnold, R. S., and Cornell R. B.. 1996. Lipid regulation of CTP:phosphocholine cytidylyltransferase: electrostatic, hydrophobic, and synergistic interactions of anionic phospholipids and diacylglycerol. Biochemistry 35:9917–9924.
  • Arnold, R. S., DePaoli-Roach A. A., and Cornell R. B.. 1997. Binding of CTP:phosphocholine cytidylyltransferase to lipid vesicles: diacylglycerol and enzyme dephosphorylation increase the affinity for negatively charged membranes. Biochemistry 36:6149–6156.
  • Attard, G. S., Templer R. H., Smith W. S., Hunt A. N., and Jackowski S.. 2000. Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress. Proc. Natl. Acad. Sci. USA 97:9032–9036.
  • Baburina, I., and Jackowski S.. 1999. Cellular responses to excess phospholipid. J. Biol. Chem. 274:9400–9408.
  • Bankaitis, V. A., and Morris A. J.. 2003. Lipids and the exocytotic machinery of eukaryotic cells. Curr. Opin. Cell Biol. 15:389–395.
  • Barbour, S. E., Kapur A., and Deal C. L.. 1999. Regulation of phosphatidylcholine homeostasis by calcium-independent phospholipase A2. Biochim. Biophys. Acta 1439:77–88.
  • Bligh, E. G., and Dyer W. J.. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–917.
  • Bodensteiner, K. J., McNatty K. P., Clay C. M., Moeller C. L., and Sawyer H. R.. 2000. Expression of growth and differentiation factor-9 in the ovaries of fetal sheep homozygous or heterozygous for the inverdale prolificacy gene (FecX(I)). Biol. Reprod. 62:1479–1485.
  • Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Braw-Tal, R., McNatty K. P., Smith P., Heath D. A., Hudson N. L., Phillips D. J., McLeod B. J., and Davis G. H.. 1993. Ovaries of ewes homozygous for the X-linked Inverdale gene (FecXI) are devoid of secondary and tertiary follicles but contain many abnormal structures. Biol. Reprod. 49:895–907.
  • Carter, J. M., Waite K. A., Campenot R. B., Vance J. E., and Vance D. E.. 2003. Enhanced expression and activation of CTP:phosphocholine cytidylyltransferase β2 during neurite outgrowth. J. Biol. Chem. 278:44988–44994.
  • Chabot, B., Stephenson D. A., Chapman V. M., Besmer P., and Bernstein A.. 1988. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature (London) 335:88–89.
  • Chiu, C.-H., and Jackowski S.. 2001. Role of calcium-independent phospholipase (iPLA2) in phosphatidylcholine metabolism. Biochem. Biophys. Res. Commun. 287:600–606.
  • Clement, J. M., and Kent C.. 1999. CTP:phosphocholine cytidylyltransferase: insights into regulatory mechanisms and novel functions. Biochem. Biophys. Res. Commun. 257:643–650.
  • Conover, J. C., and Yancopoulos G. D.. 1997. Neurotrophin regulation of the developing nervous system: analyses of knockout mice. Rev. Neurosci. 8:13–27.
  • Cornell, R. B., and Northwood I. C.. 2000. Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization. Trends Biochem. Sci. 25:441–447.
  • Craig, L., Johnson J. E., and Cornell R. B.. 1994. Identification of the membrane-binding domain of rat liver CTP:phosphocholine cytidylyltransferase using chymotrypsin proteolysis. J. Biol. Chem. 269:3311–3317.
  • Davies, S. M., Epand R. M., Kraayenhof R., and Cornell R. B.. 2001. Regulation of CTP:phosphocholine cytidylyltransferase activity by the physical properties of lipid membranes: an important role for stored curvature strain energy. Biochemistry 40:10522–10531.
  • Dunne, S. J., Cornell R. B., Johnson J. E., Glover N. R., and Tracey A. S.. 1996. Structure of the membrane binding domain of CTP:phosphocholine cytidylytransferase. Biochemistry 35:11975–11984.
  • Galloway, S. M., McNatty K. P., Cambridge L. M., Laitinen M. P., Juengel J. L., Jokiranta T. S., McLaren R. J., Luiro K., Dodds K. G., Montgomery G. W., Beattie A. E., Davis G. H., and Ritvos O.. 2000. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 25:279–283.
  • Greene, L. A. 1978. Nerve growth factor prevents the death and stimulates the neuronal differentiation of clonal PC12 pheochromocytoma cells in serum-free medium. J. Cell Biol. 78:747–755.
  • Greene, L. A., and Tischler A. S.. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73:2424–2428.
  • Gupta, T., and Schüpbach T.. 2003. Cct1, a phosphatidylcholine biosynthesis enzyme, is required for Drosophila oogenesis and ovarian morphogenesis. Development 130:6075–6087.
  • Hogan, B., Beddington R., Costantini F., and Lacy E.. 1994. Manipulating the mouse embryo. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Huang, E., Nocka A., Beier D. R., Chu T. Y., Buck J., Lahm H. W., Wellner D., Leder P., and Besmer P.. 1990. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor. Cell 63:225–233.
  • Huijbregts, R. P., Topalof L., and Bankaitis V. A.. 2000. Lipid metabolism and regulation of membrane trafficking. Traffic 1:195–202.
  • Hunt, A. N., Clark G. T., Attard G. S., and Postle A. D.. 2001. Highly saturated endonuclear phosphatidylcholine is synthesized in situ and colocated with CDP-choline pathway enzymes. J. Biol. Chem. 276:8492–8499.
  • Jackowski, S. 1994. Coordination of membrane phospholipid synthesis with the cell cycle. J. Biol. Chem. 269:3858–3867.
  • Johnson, J. E., Aebersold R., and Cornell R. B.. 1997. An amphipathic α-helix is the principle membrane-embedded region of CTP:phosphocholine cytidylyltransferase. Identification of the 3-(trifluoromethyl)-3m[125I](iodophenyl) diazirine photolabeled domain. Biochim. Biophys. Acta 1324:273–284.
  • Johnson, J. E., and Cornell R. B.. 1994. Membrane-binding amphipathic α-helical peptide derived from CTP:phosphocholine cytidylyltransferase. Biochem. J. 33:4327–4335.
  • Karim, M., Jackson P., and Jackowski S.. 2003. Gene structure, expression and identification of a new CTP:phosphocholine cytidylyltransferase beta isoform. Biochim. Biophys. Acta 1633:1–12.
  • Kumar, T. R., Wang Y., Lu N., and Matzuk M. M.. 1997. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat. Genet. 15:201–204.
  • Lagace, T. A., Miller J. R., and Ridgway N. D.. 2002. Caspase processing and nuclear export of CTP:phosphocholine cytidylyltransferase alpha during farnesol-induced apoptosis. Mol. Cell. Biol. 22:4851–4862.
  • Lykidis, A., Baburina I., and Jackowski S.. 1999. Distribution of CTP:phosphocholine cytidylyltransferase (CCT) isoforms. Identification of a new CCTβ splice variant. J. Biol. Chem. 274:26992–27001.
  • Lykidis, A., and Jackowski S.. 2000. Regulation of mammalian cell membrane biosynthesis. Prog. Nucleic Acid Res. Mol. Biol. 65:361–393.
  • Lykidis, A., Jackson P., and Jackowski S.. 2001. Lipid activation of CTP:phosphocholine cytidylyltransferase α: characterization and identification of a second activation domain. Biochemistry 40:494–503.
  • Lykidis, A., Murti K. G., and Jackowski S.. 1998. Cloning and characterization of a second human CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 273:14022–14029.
  • Manova, K., Huang E. J., Angeles M., De L., V., Sanchez S., Pronovost S. M., Besmer P., and Bachvarova R. F.. 1993. The expression pattern of the c-kit ligand in gonads of mice supports a role for the c-kit receptor in oocyte growth and in proliferation of spermatogonia. Dev. Biol. 157:85–99.
  • Matzuk, M. M. 2000. Revelations of ovarian follicle biology from gene knockout mice. Mol. Cell Endocrinol. 163:61–66.
  • McLaren, A. 1991. Development of the mammalian gonad: the fate of the supporting cell lineage. Bioessays 13:151–156.
  • McLaren, A. 1995. Germ cells and germ cell sex. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 350:229–233.
  • Nocka, K., Majumder S., Chabot B., Ray P., Cervone M., Bernstein A., and Besmer P.. 1989. Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice—evidence for an impaired c-kit kinase in mutant mice. Genes Dev. 3:816–826.
  • Noga, A. A., and Vance D. E.. 2003. A gender-specific role for phosphatidylethanolamine N-methyltransferase-derived phosphatidylcholine in the regulation of plasma high density and very low density lipoproteins in mice. J. Biol. Chem. 278:21851–21859.
  • Northwood, I. C., Tong A. H., Crawford B., Drobnies A. E., and Cornell R. B.. 1999. Shuttling of CTP:phosphocholine cytidylyltransferase between the nucleus and endoplasmic reticulum accompanies the wave of phosphatidylcholine synthesis during the G0→G1 transition. J. Biol. Chem. 274:26240–26248.
  • Park, J. Y., Su Y. Q., Ariga M., Law E., Jin S.-L. C., and Conti M.. 2004. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303:682–684.
  • Park, Y. S., Gee P., Sanker S., Schurter E. J., Zuiderweg E. R. P., and Kent C.. 1997. Identification of functional conserved residues of CTP:glycerol-3-phosphate cytidylyltransferase. J. Biol. Chem. 272:15161–15166.
  • Ridsdale, R., Tseu I., Wang J., and Post M.. 2001. CTP:phosphocholine cytidylyltransferase alpha is a cytosolic protein in pulmonary epithelial cells and tissues. J. Biol. Chem. 276:49148–49155.
  • Smith, P., WS O., Corrigan K. A., Smith T., Lundy T., Davis G. H., and McNatty K. P.. 1997. Ovarian morphology and endocrine characteristics of female sheep fetuses that are heterozygous or homozygous for the inverdale prolificacy gene (fecX1). Biol. Reprod. 57:1183–1192.
  • Tischler, A. S., and Greene L. A.. 1978. Morphologic and cytochemical properties of a clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Lab. Investig. 39:77–89.
  • Veitch, D. P., and Cornell R. B.. 1996. Substitution of serine for glycine-91 in the HXGH motif of CTP:phosphocholine cytidylyltransferase implicates this motif in CTP binding. Biochemistry 35:10743–10750.
  • Waite, K. A., Cabilio N. R., and Vance D. E.. 2002. Choline deficiency-induced liver damage is reversible in Pemt(−/−) mice. J. Nutr. 132:68–71.
  • Walkey, C. J., Kalmar G. B., and Cornell R. B.. 1994. Overexpression of rat liver CTP:phosphocholine cytidylyltransferase accelerates phosphatidylcholine synthesis and degradation. J. Biol. Chem. 269:5742–5749.
  • Walkey, C. J., Yu L., Agellon L. B., and Vance D. E.. 1998. Biochemical and evolutionary significance of phospholipid methylation. J. Biol. Chem. 273:27043–27046.
  • Wang, Y., and Kent C.. 1995. Effects of altered phosphorylation sites on the properties of CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 270:17843–17849.
  • Wang, Y., and Kent C.. 1995. Identification of an inhibitory domain of CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 270:18948–18952.
  • Wang, Y., MacDonald J. I. S., and Kent C.. 1995. Identification of the nuclear localization signal of rat liver CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 270:354–360.
  • Wang, Y., Sweitzer T. D., Weinhold P. A., and Kent C.. 1993. Nuclear localization of soluble CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 268:5899–5904.
  • Weber, C. H., Park Y. S., Sanker S., Kent C., and Ludwig M. L.. 1999. A prototypical cytidylyltransferase: CTP:glycerol-3-phosphate cytidylyltransferase from Bacillus subtilis. Structure Fold. Des. 7:1113–1124.
  • Weber, U., Eroglu C., and Mlodzik M.. 2003. Phospholipid membrane composition affects EGF receptor and notch signaling through effects on endocytosis during Drosophila development. Dev. Cell. 5:559–570.
  • Weiss, J., Axelrod L., Whitcomb R. W., Harris P. E., Crowley W. F., and Jameson J. L.. 1992. Hypogonadism caused by a single amino acid substitution in the beta subunit of luteinizing hormone. N. Engl. J. Med. 326:179–183.
  • Wu, X., and Matzuk M. M.. 2002. GDF-9 and BMP-15: oocyte organizers. Rev. Endocr. Metab. Disord. 3:27–32.
  • Xiong, Y., Liu X.-L., Wang Y., and Du Y.-C.. 2000. Cloning of cytidine triphosphate:phosphocholine cytidylyltransferase mRNA upregulated by a neuropeptide arginine-vasopressin(4-8) in rat hippocampus. Neurosci. Lett. 283:129–132.
  • Yang, W., Boggs K. P., and Jackowski S.. 1995. The association of lipid activators with the amphipathic helical domain of CTP:phosphocholine cytidylyltransferase accelerates catalysis by increasing the affinity of the enzyme for CTP. J. Biol. Chem. 270:23951–23957.
  • Yang, W., and Jackowski S.. 1995. Lipid activation of CTP:phosphocholine cytidylyltransferase is regulated by the phosphorylated carboxy terminal domain. J. Biol. Chem. 270:16503–16506.
  • Zhang, D., Tang W., Yao P. M., Yang C., Xie B., Jackowski S., and Tabas I.. 2000. Macrophages deficient in CTP:phosphocholine cytidylyltransferase-α are viable under normal culture conditions but are highly susceptible to free cholesterol-induced death. Molecular genetic evidence that the induction of phosphatidylcholine biosynthesis in free cholesterol-loaded macrophages is an adaptive response. J. Biol. Chem. 275:35368–35376.
  • Zsebo, K. M., Williams D. A., Geissler E. N., Broudy V. C., Martin F. H., Atkins H. L., Hsu R. Y., Birkett N. C., Okino K. H., Murdock D. C., Jackobsen F. W., Langley K. E., Smith K. A., Takeishi T., Cattacnach B. M., Galli S. J., and Suggs S. V.. 1990. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63:213–224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.