91
Views
94
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Role of CTCF Binding Sites in the Igf2/H19 Imprinting Control Region

, , , &
Pages 4791-4800 | Received 17 Dec 2003, Accepted 11 Mar 2004, Published online: 27 Mar 2023

REFERENCES

  • Bartolomei, M. S., and Tilghman S. M.. 1997. Genomic imprinting in mammals. Annu. Rev. Genet. 31:493–525.
  • Bartolomei, M. S., Webber A. L., Brunkow M. E., and Tilghman S. M.. 1993. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7:1663–1673.
  • Bell, A. C., and Felsenfeld G.. 2000. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405:482–485.
  • Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16:6–21.
  • Brandeis, M., Frank D., Keshet I., Siegfried Z., Mendelsohn M., Nemes A., Temper V., Razin A., and Cedar H.. 1994. Sp1 elements protect a CpG island from de novo methylation. Nature 371:435–438.
  • Davis, T. L., Trasler J. M., Moss S. B., Yang G. J., and Bartolomei M. S.. 1999. Acquisition of the H19 methylation imprint occurs differentially on the parental alleles during spermatogenesis. Genomics 58:18–28.
  • Fedoriw, A. M., Stein P., Svoboda P., Schultz R. M., and Bartolomei M. S.. 2004. Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science 303:238–240.
  • Ferguson-Smith, A. C., Sasaki H., Cattanach B. M., and Surani M. A.. 1993. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362:751–755.
  • Ferguson-Smith, A. C., and Surani M. A.. 2001. Imprinting and the epigenetic asymmetry between parental genomes. Science 293:1086–1089.
  • Hark, A. T., Schoenherr C. J., Katz D. J., Ingram R. S., Levorse J. M., and Tilghman S. M.. 2000. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489.
  • Hogan, B., Beddington R., Constantini F., and Lacy E.. 1994. Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Holmgren, C., Kanduri C., Dell G., Ward A., Mukhopadhya R., Kanduri M., Lobanenkov V., and Ohlsson R.. 2001. CpG methylation regulates the Igf2/H19 insulator. Curr. Biol. 11:1128–1130.
  • Johnson, D. R. 1974. Hairpin-tail: a case of post-reductional gene action in the mouse egg. Genetics 76:795–805.
  • Jones, P. A., and Takai D.. 2001. The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070.
  • Kaffer, C. R., Srivastava M., Park K. Y., Ives E., Hsieh S., Batlle J., Grinberg A., Huang S. P., and Pfeifer K.. 2000. A transcriptional insulator at the imprinted H19/Igf2 locus. Genes Dev. 14:1908–1919.
  • Kanduri, C., Pant V., Loukinov D., Pugacheva E., Qi C. F., Wolffe A., Ohlsson R., and Lobanenkov V. V.. 2000. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr. Biol. 10:853–856.
  • Lehnertz, B., Ueda Y., Derijck A. A., Braunschweig U., Perez-Burgos L., Kubicek S., Chen T., Li E., Jenuwein T., and Peters A. H.. 2003. Suv39h-mediated histone h3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13:1192–1200.
  • Leighton, P. A., Ingram R. S., Eggenschwiler J., Efstratiadis A., and Tilghman S. M.. 1995. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375:34–39.
  • Leighton, P. A., Saam J. R., Ingram R. S., Stewart C. L., and Tilghman S. M.. 1995. An enhancer deletion affects both H19 and Igf2 expression. Genes Dev. 9:2079–2089.
  • Loukinov, D. I., Pugacheva E., Vatolin S., Pack S. D., Moon H., Chernukhin I., Mannan P., Larsson E., Kanduri C., Vostrov A. A., Cui H., Niemitz E. L., Rasko J. E., Docquier F. M., Kistler M., Breen J. J., Zhuang Z., Quitschke W. W., Renkawitz R., Klenova E. M., Feinberg A. P., Ohlsson R., Morse III H. C., and Lobanenkov V. V.. 2002. BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc. Natl. Acad. Sci. USA 99:6806–6811.
  • Ludwig, T., Eggenschwiler J., Fisher P., D'Ercole A. J., Davenport M. L., and Efstratiadis A.. 1996. Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds. Dev. Biol. 177:517–535.
  • Macleod, D., Charlton J., Mullins J., and Bird A. P.. 1994. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8:2282–2292.
  • McLaughlin, K. J., Szabó P., Haegel H., and Mann J. R.. 1996. Mouse embryos with paternal duplication of an imprinted chromosome 7 region die at midgestation and lack placental spongiotrophoblast. Development 122:265–270.
  • Ohlsson, R., Renkawitz R., and Lobanenkov V.. 2001. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet. 17:520–527.
  • Olek, A., Oswald J., and Walter J.. 1996. A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. 24:5064–5066.
  • Pant, V., Mariano P., Kanduri C., Mattsson A., Lobanenkov V., Heuchel R., and Ohlsson R.. 2003. The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains. Genes Dev. 17:586–590.
  • Pfeifer, G. P., Tanguay R. L., Steigerwald S. D., and Riggs A. D.. 1990. In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Dev. 4:1277–1287.
  • Reed, M. R., Huang C. F., Riggs A. D., and Mann J. R.. 2001. A complex duplication created by gene targeting at the imprinted H19 locus results in two classes of methylation and correlated Igf2 expression phenotypes. Genomics 74:186–196.
  • Reik, W., and Walter J.. 1998. Imprinting mechanisms in mammals. Curr. Opin. Genet. Dev. 8:154–164.
  • Ripoche, M. A., Kress C., Poirier F., and Dandolo L.. 1997. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev. 11:1596–1604.
  • Saitoh, N., Bell A. C., Recillas-Targa F., West A. G., Simpson M., Pikaart M., and Felsenfeld G.. 2000. Structural and functional conservation at the boundaries of the chicken beta-globin domain. EMBO J. 19:2315–2322.
  • Schoenherr, C. J., Levorse J. M., and Tilghman S. M.. 2003. CTCF maintains differential methylation at the Igf2/H19 locus. Nat. Genet. 33:66–69.
  • Srivastava, M., Hsieh S., Grinberg A., Williams-Simons L., Huang S. P., and Pfeifer K.. 2000. H19 and Igf2 monoallelic expression is regulated in two distinct ways by a shared cis acting regulatory region upstream of H19. Genes Dev. 14:1186–1195.
  • Stadnick, M. P., Pieracci F. M., Cranston M. J., Taksel E., Thorvaldsen J. L., and Bartolomei M. S.. 1999. Role of a 461-bp G-rich repetitive element in H19 transgene imprinting. Dev. Genes Evol. 209:239–248.
  • Stein, P., Svoboda P., and Schultz R. M.. 2003. Transgenic RNAi in mouse oocytes: a simple and fast approach to study gene function. Dev. Biol. 256:187–193.
  • Svoboda, P., Stein P., Hayashi H., and Schultz R. M.. 2000. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127:4147–4156.
  • Szabó, P., and Mann J. R.. 1994. Expression and methylation of imprinted genes during in vitro differentiation of mouse parthenogenetic and androgenetic embryonic stem cell lines. Development 120:1651–1660.
  • Szabó, P., Tang S. H., Rentsendorj A., Pfeifer G. P., and Mann J. R.. 2000. Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr. Biol. 10:607–610.
  • Szabó, P. E., Hubner K., Scholer H., and Mann J. R.. 2002. Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech. Dev. 115:157–160.
  • Szabó, P. E., and Mann J. R.. 1995. Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting. Genes Dev. 9:1857–1868.
  • Szabó, P. E., Tang S. H., Reed M. R., Silva F. J., Tsark W. M., and Mann J. R.. 2002. The chicken beta-globin insulator element conveys chromatin boundary activity but not imprinting at the mouse Igf2/H19 domain. Development 129:897–904.
  • Szabò, P. E., Pfeifer G. P., and Mann J. R.. 2004. Parent-of-origin-specific binding of nuclear hormone receptor complexes in the H19/Igf2 imprinting control region. Mol. Cell. Biol. 24:4858–4868.
  • Tang, S. H., Silva F. J., Tsark W. M., and Mann J. R.. 2002. A Cre/loxP-deleter transgenic line in mouse strain 129S1/SvImJ. Genesis 32:199–202.
  • Thorvaldsen, J. L., Duran K. L., and Bartolomei M. S.. 1998. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12:3693–3702.
  • Thorvaldsen, J. L., Mann M. R., Nwoko O., Duran K. L., and Bartolomei M. S.. 2002. Analysis of sequence upstream of the endogenous H19 gene reveals elements both essential and dispensable for imprinting. Mol. Cell. Biol. 22:2450–2462.
  • Tremblay, K. D., Duran K. L., and Bartolomei M. S.. 1997. A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol. Cell. Biol. 17:4322–4329.
  • Tremblay, K. D., Saam J. R., Ingram R. S., Tilghman S. M., and Bartolomei M. S.. 1995. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat. Genet. 9:407–413.
  • Ueda, T., Abe K., Miura A., Yuzuriha M., Zubair M., Noguchi M., Niwa K., Kawase Y., Kono T., Matsuda Y., Fujimoto H., Shibata H., Hayashizaki Y., and Sasaki H.. 2000. The paternal methylation imprint of the mouse H19 locus is acquired in the gonocyte stage during foetal testis development. Genes Cells 5:649–659.
  • Wianny, F., and Zernicka-Goetz M.. 2000. Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2:70–75.
  • Wyszomierski, S. L., Yeh J., and Rosen J. M.. 1999. Glucocorticoid receptor/signal transducer and activator of transcription 5 (STAT5) interactions enhance STAT5 activation by prolonging STAT5 DNA binding and tyrosine phosphorylation. Mol. Endocrinol. 13:330–343.
  • Yang, S., Tutton S., Pierce E., and Yoon K.. 2001. Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol. Cell. Biol. 21:7807–7816.
  • Zemel, S., Bartolomei M. S., and Tilghman S. M.. 1992. Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2. Nat. Genet. 2:61–65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.