13
Views
21
CrossRef citations to date
0
Altmetric
Gene Expression

The Homeodomain Protein CDP Regulates Mammary-Specific Gene Transcription and Tumorigenesis

, , , &
Pages 4810-4823 | Received 22 Aug 2003, Accepted 06 Mar 2004, Published online: 27 Mar 2023

REFERENCES

  • Ai, W., Toussaint E., and Roman A.. 1999. CCAAT displacement protein binds to and negatively regulates human papillomavirus type 6 E6, E7, and E1 promoters. J. Virol. 73:4220–4229.
  • Aufiero, B., Neufeld E. J., and Orkin S. H.. 1994. Sequence-specific DNA binding of individual cut repeats of the human CCAAT displacement/cut homeodomain protein. Proc. Natl. Acad. Sci. USA 91:7757–7761.
  • Banan, M., Rojas I. C., Lee W. H., King H. L., Harriss J. V., Kobayashi R., Webb C. F., and Gottlieb P. D.. 1997. Interaction of the nuclear matrix-associated region (MAR)-binding proteins, SATB1 and CDP/Cux, with a MAR element (L2a) in an upstream regulatory region of the mouse CD8α gene. J. Biol. Chem. 272:18440–18452.
  • Barberis, A., Superti-Furga G., and Busslinger M.. 1987. Mutually exclusive interaction of the CCAAT-binding factor and of a displacement protein with overlapping sequences of a histone gene promoter. Cell 50:347–359.
  • Bodmer, R., Barbel S., Sheperd S., Jack J. W., Jan L. Y., and Jan Y. N.. 1987. Transformation of sensory organs by mutations of the cut locus of D. melanogaster. Cell 51:293–307.
  • Campbell, S. M., Rosen J. M., Hennighausen L. G., Strech-Jurk U., and Sippel A. E.. 1984. Comparison of the whey acidic protein genes of the rat and mouse. Nucleic Acids Res. 12:8685–8697.
  • Chattopadhyay, S., Whitehurst C. E., and Chen J.. 1998. A nuclear matrix attachment region upstream of the T cell receptor β gene enhancer binds Cux/CDP and SATB1 and modulates enhancer-dependent reporter gene expression but not endogenous gene expression. J. Biol. Chem. 273:29838–29846.
  • Cho, K., Ferrick D. A., and Morris D. W.. 1995. Structure and biological activity of the subgenomic Mtv-6 endogenous provirus. Virology 206:395–402.
  • Choi, Y., Kappler J. W., and Marrack P.. 1991. A superantigen encoded in the open reading frame of the 3′ long terminal repeat of mouse mammary tumour virus. Nature 350:203–207.
  • Doppler, W., Welte T., and Philipp S.. 1995. CCAAT/enhancer-binding protein isoforms beta and delta are expressed in mammary epithelial cells and bind to multiple sites in the β-casein gene promoter. J. Biol. Chem. 270:17962–17969.
  • Dudley, J. P. 1999. Mouse mammary tumor virus, p. 965–972. In Webster R. G. and Granoff A. (ed.), Encyclopedia of virology. Academic Press Ltd., London, United Kingdom.
  • Dufort, D., and Nepveu A.. 1994. The human cut homeodomain protein represses transcription from the c-myc promoter. Mol. Cell. Biol. 14:4251–4257.
  • Durban, E. M., Knepper J. E., Medina D., and Butel J. S.. 1990. Influence of mammary cell differentiation on the expression of proteins encoded by endogenous BALB/c mouse mammary tumor virus genes. Virus Res. 16:307–323.
  • Ellis, T., Gambardella L., Horcher M., Tschanz S., Capol J., Bertram P., Jochum W., Barrandon Y., and Busslinger M.. 2001. The transcriptional repressor CDP (Cutl1) is essential for epithelial cell differentiation of the lung and the hair follicle. Genes Dev. 15:2307–2319.
  • Gilead, Z., Jeng Y. H., Wold W. S., Sugawara K., Rho H. M., Harter, L. M., and Green M.. 1976. Immunological identification of two adenovirus 2-induced early proteins possibly involved in cell transformation. Nature 264:263–266.
  • Golovkina, T. V., Chervonsky A., Dudley J. P., and Ross S. R.. 1992. Transgenic mouse mammary tumor virus superantigen expression prevents viral infection. Cell 69:637–645.
  • Hennighausen, L. G., Steudle A., and Sippel A. E.. 1982. Nucleotide sequence of cloned cDNA coding for mouse epsilon casein. Eur. J. Biochem. 126:569–572.
  • Hsu, C. L., Fabritius C., and Dudley J.. 1988. Mouse mammary tumor virus proviruses in T-cell lymphomas lack a negative regulatory element in the long terminal repeat. J. Virol. 62:4644–4652.
  • Jackson, R. J., Antonia S. J., Wright K. L., Moon N. S., Nepveu A., and Munoz-Antonia T.. 1999. Human cut-like repressor protein binds TGFβ type II receptor gene promoter. Arch. Biochem. Biophys. 371:290–300.
  • Khanna-Gupta, A., Zibello T., Sun H., Gaines P., and Berliner N.. 2003. Chromatin immunoprecipitation (ChIP) studies indicate a role for CCAAT enhancer binding proteins alpha and epsilon (C/EBPα and C/EBPε) and CDP/cut in myeloid maturation-induced lactoferrin gene expression. Blood 101:3460–3468.
  • Khanna-Gupta, A., Zibello T., Sun H., Lekstrom-Himes J., and Berliner N.. 2001. C/EBP ε mediates myeloid differentiation and is regulated by the CCAAT displacement protein (CDP/cut). Proc. Natl. Acad. Sci. USA 98:8000–8005.
  • Lievens, P. M., Donady J. J., Tufarelli C., and Neufeld E. J.. 1995. Repressor activity of CCAAT displacement protein in HL-60 myeloid leukemia cells. J. Biol. Chem. 270:12745–12750.
  • Liu, J., Barnett A., Neufeld E. J., and Dudley J. P.. 1999. Homeoproteins CDP and SATB1 interact: potential for tissue-specific regulation. Mol. Cell. Biol. 19:4918–4926.
  • Liu, J., Bramblett D., Zhu Q., Lozano M., Kobayashi R., Ross S. R., and Dudley J. P.. 1997. The matrix attachment region-binding protein SATB1 participates in negative regulation of tissue-specific gene expression. Mol. Cell. Biol. 17:5275–5287.
  • Liu, S., McLeod E., and Jack J.. 1991. Four distinct regulatory regions of the cut locus and their effect on cell type specification in Drosophila. Genetics 127:151–159.
  • Luong, M. X., van der Meijden C. M., Xing D., Hesselton R., Monuki E. S., Jones S. N., Lian J. B., Stein J. L., Stein G. S., Neufeld E. J., and van Wijnen A. J.. 2002. Genetic ablation of the CDP/Cux protein C terminus results in hair cycle defects and reduced male fertility. Mol. Cell. Biol. 22:1424–1437.
  • Moon, N. S., Berube G., and Nepveu A.. 2000. CCAAT displacement activity involves CUT repeats 1 and 2, not the CUT homeodomain. J. Biol. Chem. 275:31325–31334.
  • Moon, N. S., Rong Z. W., Premdas P., Santaguida M., Berube G., and Nepveu A.. 2002. Expression of N-terminally truncated isoforms of CDP/CUX is increased in human uterine leiomyomas. Int. J. Cancer 100:429–432.
  • Morrison, B. W., and Leder P.. 1994. neu and ras initiate murine mammary tumors that share genetic markers generally absent in c-myc and int-2-initiated tumors. Oncogene 9:3417–3426.
  • Mustafa, F., Bhadra S., Johnston D., Lozano M., and Dudley J. P.. 2003. The type B leukemogenic virus truncated superantigen is dispensable for T-cell lymphomagenesis. J. Virol. 77:3866–3870.
  • Mustafa, F., Lozano M., and Dudley J. P.. 2000. C3H mouse mammary tumor virus superantigen function requires a splice donor site in the envelope gene. J. Virol. 74:9431–9440.
  • Nepveu, A. 2001. Role of the multifunctional CDP/Cut/Cux homeodomain transcription factor in regulating differentiation, cell growth and development. Gene 270:1–15.
  • O'Connor, M. J., Stunkel W., Koh C. H., Zimmermann H., and Bernard H. U.. 2000. The differentiation-specific factor CDP/Cut represses transcription and replication of human papillomaviruses through a conserved silencing element. J. Virol. 74:401–410.
  • Pattison, S., Skalnik D. G., and Roman A.. 1997. CCAAT displacement protein, a regulator of differentiation-specific gene expression, binds a negative regulatory element within the 5′ end of the human papillomavirus type 6 long control region. J. Virol. 71:2013–2022.
  • Rabson, A. B., and Graves B. J.. 1997. Synthesis and processing of viral RNA, p. 205–261. In Coffin J. M., Hughes S. H., and Varmus H. E. (ed.), Retroviruses. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Robinson, G. W., Johnson P. F., Hennighausen L., and Sterneck E.. 1998. The C/EBPβ transcription factor regulates epithelial cell proliferation and differentiation in the mammary gland. Genes Dev. 12:1907–1916.
  • Robinson, G. W., McKnight R. A., Smith G. H., and Hennighausen L.. 1995. Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 121:2079–2090.
  • Rosen, J. M., Wyszomierski S. L., and Hadsell D.. 1999. Regulation of milk protein gene expression. Annu. Rev. Nutr. 19:407–436.
  • Seagroves, T. N., Krnacik S., Raught B., Gay J., Burgess B., Darlington G. J., and Rosen J. M.. 1998. C/EBPβ, but not C/EBPα, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev. 12:1917–1928.
  • Shackleford, G. M., MacArthur C. A., Kwan H. C., and Varmus H. E.. 1993. Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-1 transgenic mice by insertional activation of int-2/Fgf-3 and hst/Fgf-4. Proc. Natl. Acad. Sci. USA 90:740–744.
  • Shackleford, G. M., and Varmus H. E.. 1988. Construction of a clonable, infectious, and tumorigenic mouse mammary tumor virus provirus and a derivative genetic vector. Proc. Natl. Acad. Sci. USA 85:9655–9659.
  • Sinclair, A. M., Lee J. A., Goldstein A., Xing D., Liu S., Ju R., Tucker P. W., Neufeld E. J., and Scheuermann R. H.. 2001. Lymphoid apoptosis and myeloid hyperplasia in CCAAT displacement protein mutant mice. Blood 98:3658–3667.
  • Tufarelli, C., Fujiwara Y., Zappulla D. C., and Neufeld E. J.. 1998. Hair defects and pup loss in mice with targeted deletion of the first cut repeat domain of the Cux/CDP homeoprotein gene. Dev. Biol. 200:69–81.
  • Vanden Heuvel, G. B., Bodmer R., McConnell K. R., Nagami G. T., and Igarashi P.. 1996. Expression of a cut-related homeobox gene in developing and polycystic mouse kidney. Kidney Int. 50:453–461.
  • Vilotte, J. L., and Soulier S.. 1992. Isolation and characterization of the mouse α-lactalbumin-encoding gene: interspecies comparison, tissue- and stage-specific expression. Gene 119:287–292.
  • Wang, Z., Goldstein A., Zong R. T., Lin D., Neufeld E. J., Scheuermann R. H., and Tucker P. W.. 1999. Cux/CDP homeoprotein is a component of NF-μNR and represses the immunoglobulin heavy chain intronic enhancer by antagonizing the bright transcription activator. Mol. Cell. Biol. 19:284–295.
  • Webster, M. A., Martin-Soudant N., Nepveu A., Cardiff R. D., and Muller W. J.. 1998. The induction of uterine leiomyomas and mammary tumors in transgenic mice expressing polyomavirus (PyV) large T (LT) antigen is associated with the ability of PyV LT antigen to form specific complexes with retinoblastoma and CUTL1 family members. Oncogene 16:1963–1972.
  • Wrona, T. J., Lozano M., Binhazim A. A., and Dudley J. P.. 1998. Mutational and functional analysis of the C-terminal region of the C3H mouse mammary tumor virus superantigen. J. Virol. 72:4746–4755.
  • Xu, L., Wrona T. J., and Dudley J. P.. 1996. Exogenous mouse mammary tumor virus (MMTV) infection induces endogenous MMTV sag expression. Virology 215:113–123.
  • Xu, L., Wrona T. J., and Dudley J. P.. 1997. Strain-specific expression of spliced MMTV RNAs containing the superantigen gene. Virology 236:54–65.
  • Yoshimura, M., and Oka T.. 1989. Isolation and structural analysis of the mouse beta-casein gene. Gene 78:267–275.
  • Zeng, W. R., Scherer S. W., Koutsilieris M., Huizenga J. J., Filteau F., Tsui L. C., and Nepveu A.. 1997. Loss of heterozygosity and reduced expression of the CUTL1 gene in uterine leiomyomas. Oncogene 14:2355–2365.
  • Zeng, W. R., Watson P., Lin J., Jothy S., Lidereau R., Park M., and Nepveu A.. 1999. Refined mapping of the region of loss of heterozygosity on the long arm of chromosome 7 in human breast cancer defines the location of a second tumor suppressor gene at 7q22 in the region of the CUTL1 gene. Oncogene 18:2015–2021.
  • Zhu, Q., and Dudley J. P.. 2002. CDP binding to multiple sites in the mouse mammary tumor virus long terminal repeat suppresses basal and glucocorticoid-induced transcription. J. Virol. 76:2168–2179.
  • Zhu, Q., Gregg K., Lozano M., Liu J., and Dudley J. P.. 2000. CDP is a repressor of mouse mammary tumor virus expression in the mammary gland. J. Virol. 74:6348–6357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.