19
Views
20
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Parent-of-Origin-Specific Binding of Nuclear Hormone Receptor Complexes in the H19-Igf2 Imprinting Control Region

, &
Pages 4858-4868 | Received 12 Nov 2003, Accepted 27 Feb 2004, Published online: 27 Mar 2023

REFERENCES

  • Arnold, R., Burcin M., Kaiser B., Muller M., and Renkawitz R.. 1996. DNA bending by the silencer protein NeP1 is modulated by TR and RXR. Nucleic Acids Res. 24:2640–2647.
  • Bartolomei, M. S., Webber A. L., Brunkow M. E., and Tilghman S. M.. 1993. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7:1663–1673.
  • Bell, A. C., and Felsenfeld G.. 2000. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405:482–485.
  • Bell, A. C., West A. G., and Felsenfeld G.. 1999. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98:387–396.
  • Collingwood, T. N., Urnov F. D., and Wolffe A. P.. 1999. Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription. J. Mol. Endocrinol. 23:255–275.
  • Davis, T. L., Trasler J. M., Moss S. B., Yang G. J., and Bartolomei M. S.. 1999. Acquisition of the H19 methylation imprint occurs differentially on the parental alleles during spermatogenesis. Genomics 58:18–28.
  • Di Croce, L., Raker V. A., Corsaro M., Fazi F., Fanelli M., Faretta M., Fuks F., Lo Coco F., Kouzarides T., Nervi C., Minucci S., and Pelicci P. G.. 2002. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295:1079–1082.
  • Hark, A. T., Schoenherr C. J., Katz D. J., Ingram R. S., Levorse J. M., and Tilghman S. M.. 2000. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489.
  • Hogan, B., Beddington R., Constantini F., and Lacy E.. 1994. Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Kaffer, C. R., Srivastava M., Park K. Y., Ives E., Hsieh S., Batlle J., Grinberg A., Huang S. P., and Pfeifer K.. 2000. A transcriptional insulator at the imprinted H19/Igf2 locus. Genes Dev. 14:1908–1919.
  • Kanduri, C., Pant V., Loukinov D., Pugacheva E., Qi C. F., Wolffe A., Ohlsson R., and Lobanenkov V. V.. 2000. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr. Biol. 10:853–856.
  • Kato, S., Sasaki H., Suzawa M., Masushige S., Tora L., Chambon P., and Gronemeyer H.. 1995. Widely spaced, directly repeated PuGGTCA elements act as promiscuous enhancers for different classes of nuclear receptors. Mol. Cell. Biol. 15:5858–5867.
  • Kato, S., Tora L., Yamauchi J., Masushige S., Bellard M., and Chambon P.. 1992. A far upstream estrogen response element of the ovalbumin gene contains several half-palindromic 5′-TGACC-3′ motifs acting synergistically. Cell 68:731–742.
  • Leighton, P. A., Ingram R. S., Eggenschwiler J., Efstratiadis A., and Tilghman S. M.. 1995. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375:34–39.
  • Leighton, P. A., Saam J. R., Ingram R. S., Stewart C. L., and Tilghman S. M.. 1995. An enhancer deletion affects both H19 and Igf2 expression. Genes Dev. 9:2079–2089.
  • Li, E., Beard C., and Jaenisch R.. 1993. Role for DNA methylation in genomic imprinting. Nature 366:362–365.
  • Li, J., Lin Q., Yoon H. G., Huang Z. Q., Strahl B. D., Allis C. D., and Wong J.. 2002. Involvement of histone methylation and phosphorylation in regulation of transcription by thyroid hormone receptor. Mol. Cell. Biol. 22:5688–5697.
  • Lutz, M., Burke L. J., LeFevre P., Myers F. A., Thorne A. W., Crane-Robinson C., Bonifer C., Filippova G. N., Lobanenkov V., and Renkawitz R.. 2003. Thyroid hormone-regulated enhancer blocking: cooperation of CTCF and thyroid hormone receptor. EMBO J. 22:1579–1587.
  • Malkov, M., Fisher Y., and Don J.. 1998. Developmental schedule of the postnatal rat testis determined by flow cytometry. Biol. Reprod. 59:84–92.
  • Mann, J. R., Szabó P. E., Reed M. R., and Singer-Sam J.. 2000. Methylated DNA sequences in genomic imprinting. Crit. Rev. Eukaryot. Gene Expr. 10:241–257.
  • Maxam, A. M., and Gilbert W.. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74:560–564.
  • McLaughlin, K. J., Szabó P., Haegel H., and Mann J. R.. 1996. Mouse embryos with paternal duplication of an imprinted chromosome 7 region die at midgestation and lack placental spongiotrophoblast. Development 122:265–270.
  • Nabetani, A., Hatada I., Morisaki H., Oshimura M., and Mukai T.. 1997. Mouse U2af1-rs1 is a neomorphic imprinted gene. Mol. Cell. Biol. 17:789–798.
  • Pant, V., Mariano P., Kanduri C., Mattsson A., Lobanenkov V., Heuchel R., and Ohlsson R.. 2003. The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains. Genes Dev. 17:586–590.
  • Pfeifer, G. P., and Riggs A. D.. 1991. Chromatin differences between active and inactive X chromosomes revealed by genomic footprinting of permeabilized cells using DNase I and ligation-mediated PCR. Genes Dev. 5:1102–1113.
  • Ripoche, M. A., Kress C., Poirier F., and Dandolo L.. 1997. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev. 11:1596–1604.
  • Schoenherr, C. J., Levorse J. M., and Tilghman S. M.. 2003. CTCF maintains differential methylation at the Igf2/H19 locus. Nat. Genet. 33:66–69.
  • Searle, A. G., and Beechey C. V.. 1990. Genome imprinting phenomena on mouse chromosome 7. Genet. Res. 56:237–244.
  • Shibata, H., Ueda T., Kamiya M., Yoshiki A., Kusakabe M., Plass C., Held W. A., Sunahara S., Katsuki M., Muramatsu M., and Hayashizaki Y.. 1997. An oocyte-specific methylation imprint center in the mouse U2afbp-rs/U2af1-rs1 gene marks the establishment of allele-specific methylation during preimplantation development. Genomics 44:171–178.
  • Shibata, H., Yoda Y., Kato R., Ueda T., Kamiya M., Hiraiwa N., Yoshiki A., Plass C., Pearsall R. S., Held W. A., Muramatsu M., Sasaki H., Kusakabe M., and Hayashizaki Y.. 1998. A methylation imprint mark in the mouse imprinted gene Grf1/Cdc25Mm locus shares a common feature with the U2afbp-rs gene: an association with a short tandem repeat and a hypermethylated region. Genomics 49:30–37.
  • Song, M. R., Lee S. K., Seo Y. W., Choi H. S., Lee J. W., and Lee M. O.. 1998. Differential modulation of transcriptional activity of oestrogen receptors by direct protein-protein interactions with retinoid receptors. Biochem. J. 336(Pt. 3):711–717.
  • Srivastava, M., Hsieh S., Grinberg A., Williams-Simons L., Huang S. P., and Pfeifer K.. 2000. H19 and Igf2 monoallelic expression is regulated in two distinct ways by a shared cis acting regulatory region upstream of H19. Genes Dev. 14:1186–1195.
  • Sucov, H. M., Dyson E., Gumeringer C. L., Price J., Chien K. R., and Evans R. M.. 1994. RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev. 8:1007–1018.
  • Szabó, P., Tang S. H., Rentsendorj A., Pfeifer G. P., and Mann J. R.. 2000. Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr. Biol. 10:607–610.
  • Szabó, P. E., Hubner K., Scholer H., and Mann J. R.. 2002. Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech. Dev. 115:157–160.
  • Szabó, P. E., and Mann J. R.. 1995. Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting. Genes Dev. 9:1857–1868.
  • Szabó, P. E., Pfeifer G. P., and Mann J. R.. 1998. Characterization of novel parent-specific epigenetic modifications upstream of the imprinted mouse H19 gene. Mol. Cell. Biol. 18:6767–6776.
  • Szabó, P. E., Pfeifer G. P., Miao F., O'Connor T. R., and Mann J. R.. 2000. Improved in vivo dimethyl sulfate footprinting using AlkA protein: DNA-protein interactions at the mouse H19 gene promoter in primary embryo fibroblasts. Anal. Biochem. 283:112–116.
  • Szabó, P. E., Tang S. H., Reed M. R., Silva F. J., Tsark W. M., and Mann J. R.. 2002. The chicken beta-globin insulator element conveys chromatin boundary activity but not imprinting at the mouse Igf2/H19 domain. Development 129:897–904.
  • Szabó, P. E., Tang S.-H. E., Silva F. J., Tsark W. M. K., and Mann J. R.. 2004. Role of CTCF binding sites in the Igf2/H19 imprinting control region. Mol. Cell. Biol. 24:4791–4800.
  • Tang, S. H., Silva F. J., Tsark W. M., and Mann J. R.. 2002. A Cre/loxP-deleter transgenic line in mouse strain 129S1/SvImJ. Genesis 32:199–202.
  • Thorvaldsen, J. L., Duran K. L., and Bartolomei M. S.. 1998. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12:3693–3702.
  • Tornaletti, S., and Pfeifer G. P.. 1995. UV light as a footprinting agent: modulation of UV-induced DNA damage by transcription factors bound at the promoters of three human genes. J. Mol. Biol. 249:714–728.
  • Tremblay, K. D., Duran K. L., and Bartolomei M. S.. 1997. A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol. Cell. Biol. 17:4322–4329.
  • Ueda, T., Abe K., Miura A., Yuzuriha M., Zubair M., Noguchi M., Niwa K., Kawase Y., Kono T., Matsuda Y., Fujimoto H., Shibata H., Hayashizaki Y., and Sasaki H.. 2000. The paternal methylation imprint of the mouse H19 locus is acquired in the gonocyte stage during foetal testis development. Genes Cells 5:649–659.
  • Webb, P., Valentine C., Nguyen P., Price R. H., Jr., Marimuthu A., West B. L., Baxter J. D., and Kushner P. J.. 2003. ERbeta binds N-CoR in the presence of estrogens via an LXXLL-like motif in the N-CoR C-terminus. Nucl. Recept. 1:4.
  • Wyszomierski, S. L., Yeh J., and Rosen J. M.. 1999. Glucocorticoid receptor/signal transducer and activator of transcription 5 (STAT5) interactions enhance STAT5 activation by prolonging STAT5 DNA binding and tyrosine phosphorylation. Mol. Endocrinol. 13:330–343.
  • Xu, L., Glass C. K., and Rosenfeld M. G.. 1999. Coactivator and corepressor complexes in nuclear receptor function. Curr. Opin. Genet. Dev. 9:140–147.
  • Zemel, S., Bartolomei M. S., and Tilghman S. M.. 1992. Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2. Nat. Genet. 2:61–65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.