22
Views
93
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Amphoterin Stimulates Myogenesis and Counteracts the Antimyogenic Factors Basic Fibroblast Growth Factor and S100B via RAGE Binding

, , , &
Pages 4880-4894 | Received 26 Sep 2003, Accepted 03 Mar 2004, Published online: 27 Mar 2023

REFERENCES

  • Andres, V., and Walsh K.. 1996. Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J. Cell Biol. 132:657–666.
  • Arnold, H. H., and Winter B.. 1998. Muscle differentiation: more complexity to the network of myogenic regulators. Curr. Opin. Genet. Dev. 8:539–544.
  • Arumugam, T., Simeone D. M., Schmidt A. M., and Logsdon C. D.. 2004. S100P stimulates cell proliferation and survival via RAGE. J. Biol. Chem. 279:5059–5065. (First published 14 November 2003; 10.1074/jbc.M310124200.)
  • Bennett, A. M., and Tonks N. K.. 1997. Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 278:1288–1291.
  • Bergstrom, D. A., Penn B. H., Strand A., Perry R. L., Rudnicki M. A., and Tapscott S. J.. 2002. Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol. Cell 9:587–600.
  • Bour, B. A., Chakravarti M., West J. M., and Abmayr S. M.. 2000. Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes Dev. 14:1498–1511.
  • Brett, J., Schmidt A. M., Yan S. D., Zou Y. S., Weidman E., Pinsky D., Nowygrod R., Neeper M., Przysiecki C., and Shaw A.. 1993. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am. J. Pathol. 143:1699–1712.
  • Coletti, D., Yang E., Marazzi G., and Sassoon D.. 2002. TNF inhibits skeletal myogenesis through a PW1-dependent pathway by recruitment of caspase pathways. EMBO J. 21:631–642.
  • Coolican, S. A., Samuel D. S., Ewton D. Z., McWade F. J., and Florini J. R.. 1997. The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J. Biol. Chem. 272:6653–6662.
  • Cuenda, A., and Cohen P.. 1999. Stress-activated protein kinase 2/p38 and rapamycin-sensitive pathway are required for C2C12 myogenesis. J. Biol. Chem. 274:4341–4346.
  • Donato, R. 2001. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol. 33:637–668.
  • Erck, C., Meisinger C., Grothe C., and Seidl K.. 1998. Regulation of nerve growth factor and its low-affinity receptor (p75NTR) during myogenic differentiation. J. Cell. Physiol. 176:22–31.
  • Florini, J. R., Samuel D. S., Ewton D. Z., Kirk C., and Sklar R. M.. 1996. Stimulation of myogenic differentiation by a neuregulin, glial growth factor 2. Are neuregulins the long-sought muscle trophic factors secreted by nerves? J. Biol. Chem. 271:12699–12702.
  • Florini, J. R., Ewton D. Z., and Coolican S. A.. 1996. Growth hormone and the insulin-like growth factor system in myogenesis. Endocr. Rev. 17:481–517.
  • Florini, J. R., Magri K. A., Ewton D. Z., James P. L., Grindstaff K., and Rotwein P. S.. 1991. “Spontaneous” differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-II. J. Biol. Chem. 266:15917–15923.
  • Foulstone, E. J., Meadows K. A., Holly J. M., and Stewart C. E.. 2001. Insulin-like growth factors (IGF-I and IGF-II) inhibit C2 skeletal myoblast differentiation and enhance TNF alpha-induced apoptosis. J. Cell. Physiol. 189:207–215.
  • Fujio, Y., Guo K., Mano T., Mitsuuchi Y., Testa J. R., and Walsh K.. 1999. Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival. Mol. Cell. Biol. 19:5073–5082.
  • Guo, K., Wang J., Andres V., Smith R. C., and Walsh K.. 1995. MyoD-induced expression of p21 inhibits cyclin-dependent kinase activity upon myocyte terminal differentiation. Mol. Cell. Biol. 15:3823–3829.
  • Heizmann, C. W., Fritz G., and Schafer B. W.. 2002. S100 proteins: structure, functions and pathology. Front. Biosci. 7:d1356–1368.
  • Hofmann, M. A., Drury S., Fu C., Qu W., Taguchi A., Lu Y., Avila C., Kambham N., Bierhaus A., Nawroth P., Neurath M. F., Slattery T., Beach D., McClary J., Nagashima M., Morser J., Stern D., and Schmidt A. M.. 1999. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901.
  • Hori, O., Brett J., Slattery T., Cao R., Zhang J., Chen J. X., Nagashima M., Lundh E. R., Vijay S., Nitecki D., Morser J., Stern D., and Schmidt A. M.. 1995. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of RAGE and amphoterin in the developing nervous system. J. Biol. Chem. 270:25752–25761.
  • Huttunen, H. J., Fages C., and Rauvala H.. 1999. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-B require the cytoplasmic domain of the receptor but different downstream signaling pathways. J. Biol. Chem. 274:19919–19924.
  • Huttunen, H. J., Kuja-Panula J., Sorci G., Agneletti A. L., Donato R., and Rauvala H.. 2000. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through RAGE activation. J. Biol. Chem. 275:40096–40105.
  • Ishihara, K., Tsutsumi K., Kawane S., Nakajima M., and Kasaoka T.. 2003. The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Lett. 550:107–113.
  • Kaliman, P., Canicio J., Testar X., Palacin M., and Zorzano A.. 1999. Insulin-like growth factor-II, phosphatidylinositol 3-kinase, nuclear factor-kappaB and inducible nitric-oxide synthase define a common myogenic signaling pathway. J. Biol. Chem. 274:17437–17444.
  • Kallijarvi, J., Haltia M., and Baumann M. H.. 2001. Amphoterin includes a sequence motif which is homologous to the Alzheimer's-amyloid peptide (A), forms amyloid fibrils in vitro, and binds avidly to A. Biochemistry 40:10032–10037.
  • Kang, J. S., Mulieri P. J., Miller C., Sassoon D. A., and Krauss R. S.. 1998. CDO, a robo-related cell surface protein that mediates myogenic differentiation. J. Cell Biol. 143:403–413.
  • Kim, D., Chi S., Lee K. H., Rhee S., Kwon Y. K., Chung C. H., Kwon H., and Kang M. S.. 1999. Neuregulin stimulates myogenic differentiation in an autocrine manner. J. Biol. Chem. 274:15395–15400.
  • Kontaridis, M. I., Liu X., Zhang L., and Bennett A. M.. 2002. Role of SHP-2 in fibroblast growth factor receptor-mediated suppression of myogenesis in C2C12 myoblasts. Mol. Cell. Biol. 22:3875–3891.
  • Langen, R. C., Schols A. M., Kelders M. C., Wouters E. F., and Janssen-Heininger Y. M.. 2001. Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-B. FASEB J. 15:1169–1180.
  • Lassar, A. B., Skapek S. X., and Novitch B.. 1994. Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr. Opin. Cell Biol. 6:788–794.
  • Li, Y., Jiang B., Ensign W. Y., Vogt P. K., and Han J.. 2000. Myogenic differentiation requires signalling through both phosphatidylinositol 3-kinase and p38 MAP kinase. Cell. Signal. 12:751–757.
  • Ludolph, D. C., and Konieczny S. F.. 1995. Transcription factor families: muscling in on the myogenic program. FASEB J. 9:1595–1604.
  • Lue, L. F., Walker D. G., Brachova L., Beach T. G., Rogers J., Schmidt A. M., Stern D. M., and Yan S. D.. 2001. Involvement of microglial receptor for advanced glycation end products (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Exp. Neurol. 171:29–45.
  • Massague, J., Cheifetz S., Endo T., and Nadal-Ginard B.. 1986. Type beta transforming growth factor is an inhibitor of myogenic differentiation. Proc. Natl. Acad. Sci. USA 83:8206–8210.
  • Meriane, M., Roux P., Primig M., Fort P., and Gauthier-Rouviere C.. 2000. Critical activities of Rac1 and Cdc42Hs in skeletal myogenesis: antagonistic effects of JNK and p38 pathways. Mol. Biol. Cell 11:2513–2528.
  • Miller, S. C., Ito H., Blau H. M., and Torti F. M.. 1988. Tumor necrosis factor inhibits human myogenesis in vitro. Mol. Cell. Biol. 8:2295–2301.
  • Muller, S., Scaffidi P., Degryse B., Bonaldi T., Ronfani L., Agresti A., Beltrame M., and Bianchi M. E.. 2001. The double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J. 20:4337–4340.
  • Olson, E. N. 1992. Interplay between proliferation and differentiation within the myogenic lineage. Dev. Biol. 154:261–272.
  • Olson, E. N., Spizz G., and Tainsky M. A.. 1987. The oncogenic forms of N-ras or H-ras prevent skeletal myoblast differentiation. Mol. Cell. Biol. 7:2104–2111.
  • Patel, B. N., and Van Vactor D. L.. 2002. Axon guidance: the cytoplasmic tail. Curr. Opin. Cell Biol. 14:221–229.
  • Pena, T. L., Chen S. H., Konieczny S. F., and Rane S. G.. 2000. Ras/MEK/ERK up-regulation of the fibroblast KCa channel FIK is a common mechanism for basic fibroblast growth factor and transforming growth factor-beta suppression of myogenesis. J. Biol. Chem. 275:13677–13682.
  • Perry, R. L., Parker M. H., and Rudnicki M. A.. 2001. Activated MEK1 binds the nuclear MyoD transcriptional complex to repress transactivation. Mol. Cell 8:291–301.
  • Puri, P. L., Wu Z., Zhang P., Wood L. D., Bhakta K. S., Han J., Feramisco J. R., Karin M., and Wang J. Y. J.. 2000. Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev. 14:574–584.
  • Rende, M., Brizi E., Conner J., Treves S., Censier K., Provenzano C., Taglialatela G., Sanna P. P., and Donato R.. 2000. Nerve growth factor (NGF) influences differentiation and proliferation of myogenic cells in vitro via TrKA. Int. J. Dev. Neurosci. 18:869–885.
  • Ruiz-Gomez, M., Coutts N., Price A., Taylor M. V., and Bate M.. 2000. Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell 102:189–198.
  • Sakaguchi, T., Yan S. F., Yan S. D., Belov D., Rong L. L., Sousa M., Andrassy M., Marso S. P., Duda S., Arnold B., Liliensiek B., Nawroth P. P., Stern D. M., Schmidt A. M., and Naka Y.. 2003. Central role of RAGE-dependent neointimal expansion in arterial restenosis. J. Clin. Investig. 111:959–972.
  • Schmidt, A. M., Yan S. D., Yan S. F., and Stern D.. 2000. The biology of the receptor for advanced glycation end products and its ligands. Biochim. Biophys. Acta 1498:99–111.
  • Schmidt, A. M., Yan S. D., Yan S. F., and Stern D. M.. 2001. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Investig. 108:949–955.
  • Seidl, K., Erck C., and Buchberger A.. 1998. Evidence for the participation of nerve growth factor and its low-affinity receptor (p75NTR) in the regulation of the myogenic program. J. Cell. Physiol. 176:10–21.
  • Sorci, G., Riuzzi F., Agneletti A. L., Marchetti C., and Donato R.. 2003. S100B inhibits myogenic differentiation and myotube formation in a RAGE-independent manner. Mol. Cell. Biol. 23:4870–4881.
  • Sorci, G., Bianchi R., Giambanco I., Rambotti M. G., and Donato R.. 1999. Replicating myoblasts and fused myotubes express the calcium-modulated proteins S100A1 and S100B. Cell Calcium 25:93–106.
  • Srikrishna, G., Huttunen H. J., Johansson L., Weigle B., Yamaguchi Y., Rauvala H., and Freeze H. H.. 2002. N-glycans on the receptor for advanced glycation end products influence amphoterin binding and neurite outgrowth. J. Neurochem. 80:998–1008.
  • Taguchi, A., Blood D. C., del Toro G., Canet A., Lee D. C., Qu W., Tanji N., Lu Y., Lalla E., Fu C., Hofmann M. A., Kislinger T., Ingram M., Lu A., Tanaka H., Hori O., Ogawa S., Stern D. M., and Schmidt A. M.. 2000. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405:354–360.
  • Tamir, Y., and Bengal E.. 2000. Phosphoinositide 3-kinase induces the transcriptional activity of MEF2 proteins during muscle differentiation. J. Biol. Chem. 275:34424–34432.
  • Tortorella, L. L., Milasincic D. J., and Pilch P. F.. 2001. Critical proliferation-independent window for basic fibroblast growth factor repression of myogenesis via the p42/p44 MAPK signaling pathway. J. Biol. Chem. 276:13709–13717.
  • Tureckova, J., Wilson E. M., Cappalonga J. L., and Rotwein P.. 2001. Insulin-like growth factor-mediated muscle differentiation: collaboration between phosphatidylinositol 3-kinase-Akt-signaling pathways and myogenin. J. Biol. Chem. 276:39264–39270.
  • Wang, H., Yang H., Czura C. J., Sama A. E., and Tracey K. J.. 2001. HMGB1 as a late mediator of lethal systemic inflammation. Am. J. Respir. Crit. Care Med. 164:1768–1773.
  • Weintraub, H. 1993. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75:1241–1244.
  • Wendt, T., Bucciarelli L., Qu W., Lu Y., Yan S. F., Stern D. M., and Schmidt A. M.. 2002. Receptor for advanced glycation end products (RAGE) and vascular inflammation: insights into the pathogenesis of macrovascular complications in diabetes. Curr. Atheroscler. Rep. 4:228–237.
  • Winter, B., and Arnold H.-H.. 2000. Activated Rak kinase inhibits muscle cell differentiation through a MEF2-dependent mechanism. J. Cell Sci. 113:4211–4220.
  • Wu, Z., Woodring P. J., Bhakta K. S., Tamura K., Wen F., Feramisco J. R., Karin M., Wang J. Y. J., and Puri P. L.. 2000. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol. Cell. Biol. 20:3951–3964.
  • Xu, D., and Kyriakis J. M.. 2003. Phosphatidylinositol 3′-kinase-dependent activation of renal mesangial cell Ki-Ras and ERK by advanced glycation end products. J. Biol. Chem. 278:39349–39355.
  • Yan, S. D., Zhu H., Fu J., Yan S. F., Roher A., Tourtellotte W. W., Rajavashisth T., Chen X., Godman G. C., Stern D., and Schmidt A. M.. 1997. Amyloid-beta peptide-receptor for advanced glycation end product interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc. Natl. Acad. Sci. USA 94:5296–5301.
  • Yan, S. D., Chen X., Fu J., Chen M., Zhu H., Roher A., Slattery T., Zhao L., Nagashima M., Morser J., Migheli A., Nawroth P., Stern D., and Schmidt A. M.. 1996. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature 382:685–691.
  • Zetser, A., Gredinger E., and Bengal E.. 1999. p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. J. Biol. Chem. 274:5193–5200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.