152
Views
250
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Signaling Specificity by Ras Family GTPases Is Determined by the Full Spectrum of Effectors They Regulate

, &
Pages 4943-4954 | Received 05 Nov 2003, Accepted 23 Feb 2004, Published online: 27 Mar 2023

REFERENCES

  • Alessi, D. R., Cohen P., Ashworth A., Cowley S., Leevers S. J., and Marshall C. J.. 1995. Assay and expression of mitogen-activated protein kinase, MAP kinase kinase, and Raf. Methods Enzymol. 255:279–290.
  • Barker, K. T., and Crompton M. R.. 1998. Ras-related TC21 is activated by mutation in a breast cancer cell line, but infrequently in breast carcinomas in vivo. Br J. Cancer 78:296–300.
  • Boettner, B., Herrmann C., and Van Aelst L.. 2001. Ras and Rap1 interaction with AF-6 effector target. Methods Enzymol. 332:151–168.
  • Bos, J. L. 1989. ras oncogenes in human cancer: a review. Cancer Res. 49:4682–4689.
  • Bos, J. L., De Bruyn K., Enserink J., Kuiperij B., Rangarajan S., Rehmann H., Riedl J., De Rooij J., Van Mansfeld F., and Zwartkruis F.. 2003. The role of Rap1 in integrin-mediated cell adhesion. Biochem. Soc. Trans. 31:83–86.
  • Bos, J. L., de Rooij J., and Reedquist K. A.. 2001. Rap1 signalling: adhering to new models. Nat. Rev. Mol. Cell Biol. 2:369–377.
  • Chan, A. M., Miki T., Meyers K. A., and Aaronson S. A.. 1994. A human oncogene of the RAS superfamily unmasked by expression cDNA cloning. Proc. Natl. Acad. Sci. USA 91:7558–7562.
  • Chong, H., Vikis H. G., and Guan K. L.. 2003. Mechanisms of regulating the Raf kinase family. Cell Signal 15:463–469.
  • Christoforidis, S., Miaczynska M., Ashman K., Wilm M., Zhao L., Yip S. C., Waterfield M. D., Backer J. M., and Zerial M.. 1999. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat. Cell Biol. 1:249–252.
  • Clark, G. J., Kinch M. S., Gilmer T. M., Burridge K., and Der C. J.. 1996. Overexpression of the Ras-related TC21/R-Ras2 protein may contribute to the development of human breast cancers. Oncogene 12:169–176.
  • Cook, S. J., Rubinfeld B., Albert I., and McCormick F.. 1993. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 12:3475–3485.
  • Cox, A. D., Brtva T. R., Lowe D. G., and Der C. J.. 1994. R-Ras induces malignant, but not morphologic, transformation of NIH3T3 cells. Oncogene 9:3281–3288.
  • Dammann, R., Li C., Yoon J. H., Chin P. L., Bates S., and Pfeifer G. P.. 2000. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat. Genet. 25:315–319.
  • Ehrhardt, A., Ehrhardt G. R., Guo X., and Schrader J. W.. 2002. Ras and relatives—job sharing and networking keep an old family together. Exp. Hematol. 30:1089–1106.
  • Ehrhardt, G. R., Korherr C., Wieler J. S., Knaus M., and Schrader J. W.. 2001. A novel potential effector of M-Ras and p21 Ras negatively regulates p21 Ras-mediated gene induction and cell growth. Oncogene 20:188–197.
  • Ehrhardt, G. R., Leslie K. B., Lee F., Wieler J. S., and Schrader J. W.. 1999. M-Ras, a widely expressed 29-kD homologue of p21 Ras: expression of a constitutively active mutant results in factor-independent growth of an interleukin-3-dependent cell line. Blood 94:2433–2444.
  • Enserink, J. M., Christensen A. E., de Rooij J., van Triest M., Schwede F., Genieser H. G., Doskeland S. O., Blank J. L., and Bos J. L.. 2002. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat. Cell Biol. 4:901–906.
  • Feig, L. A. 2003. Ral-GTPases: approaching their 15 minutes of fame. Trends Cell Biol. 13:419–425.
  • Frech, M., Schlichting I., Wittinghofer A., and Chardin P.. 1990. Guanine nucleotide binding properties of the mammalian RalA protein produced in Escherichia coli. J. Biol. Chem. 265:6353–6359.
  • Gao, X., Satoh T., Liao Y., Song C., Hu C. D., Kariya Ki K., and Kataoka T.. 2001. Identification and characterization of RA-GEF-2, a Rap guanine nucleotide exchange factor that serves as a downstream target of M-Ras. J. Biol. Chem. 276:42219–42225.
  • Graham, S. M., Cox A. D., Drivas G., Rush M. G., D'Eustachio P., and Der C. J.. 1994. Aberrant function of the Ras-related protein TC21/R-Ras2 triggers malignant transformation. Mol. Cell. Biol. 14:4108–4115.
  • Graham, S. M., Oldham S. M., Martin C. B., Drugan J. K., Zohn I. E., Campbell S., and Der C. J.. 1999. TC21 and Ras share indistinguishable transforming and differentiating activities. Oncogene 18:2107–2116.
  • Hamad, N. M., Elconin J. H., Karnoub A. E., Bai W., Rich J. N., Abraham R. T., Der C. J., and Counter C. M.. 2002. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev. 16:2045–2057.
  • Han, D. C., Shen T. L., and Guan J. L.. 2001. The Grb7 family proteins: structure, interactions with other signaling molecules and potential cellular functions. Oncogene 20:6315–6321.
  • Han, L., Wong D., Dhaka A., Afar D., White M., Xie W., Herschman H., Witte O., and Colicelli J.. 1997. Protein binding and signaling properties of RIN1 suggest a unique effector function. Proc. Natl. Acad. Sci. USA 94:4954–4959.
  • Hesson, L., Dallol A., Minna J. D., Maher E. R., and Latif F.. 2003. NORE1A, a homologue of RASSF1A tumour suppressor gene is inactivated in human cancers. Oncogene 22:947–954.
  • Hu, C. D., Kariya K., Tamada M., Akasaka K., Shirouzu M., Yokoyama S., and Kataoka T.. 1995. Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras. J. Biol. Chem. 270:30274–30277.
  • Huang, Y., Saez R., Chao L., Santos E., Aaronson S. A., and Chan A. M.. 1995. A novel insertional mutation in the TC21 gene activates its transforming activity in a human leiomyosarcoma cell line. Oncogene 11:1255–1260.
  • Katso, R., Okkenhaug K., Ahmadi K., White S., Timms J., and Waterfield M. D.. 2001. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17:615–675.
  • Kelley, G. G., Reks S. E., Ondrako J. M., and Smrcka A. V.. 2001. Phospholipase Cε: a novel Ras effector. EMBO J. 20:743–754.
  • Khokhlatchev, A., Rabizadeh S., Xavier R., Nedwidek M., Chen T., Zhang X. F., Seed B., and Avruch J.. 2002. Identification of a novel Ras-regulated proapoptotic pathway. Curr. Biol. 12:253–265.
  • Kimmelman, A., Tolkacheva T., Lorenzi M. V., Osada M., and Chan A. M.. 1997. Identification and characterization of R-ras3: a novel member of the RAS gene family with a nonubiquitous pattern of tissue distribution. Oncogene 15:2675–2685.
  • Kimmelman, A. C., Nunez Rodriguez N., and Chan A. M.. 2002. R-Ras3/M-Ras induces neuronal differentiation of PC12 cells through cell-type-specific activation of the mitogen-activated protein kinase cascade. Mol. Cell. Biol. 22:5946–5961.
  • Kuroda, Y., Suzuki N., and Kataoka T.. 1993. The effect of posttranslational modifications on the interaction of Ras2 with adenylyl cyclase. Science 259:683–686.
  • Kurosu, H., Maehama T., Okada T., Yamamoto T., Hoshino S., Fukui Y., Ui M., Hazeki O., and Katada T.. 1997. Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110beta is synergistically activated by the βγ subunits of G proteins and phosphotyrosyl peptide. J. Biol. Chem. 272:24252–24256.
  • Lambert, J. M., Lambert Q. T., Reuther G. W., Malliri A., Siderovski D. P., Sondek J., Collard J. G., and Der C. J.. 2002. Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nat. Cell Biol. 4:621–625.
  • Lee, C. H., Della N. G., Chew C. E., and Zack D. J.. 1996. Rin, a neuron-specific and calmodulin-binding small G-protein, and Rit define a novel subfamily of ras proteins. J. Neurosci. 16:6784–6794.
  • Light, Y., Paterson H., and Marais R.. 2002. 14-3-3 antagonizes Ras-mediated Raf-1 recruitment to the plasma membrane to maintain signaling fidelity. Mol. Cell. Biol. 22:4984–4996.
  • Linnemann, T., Geyer M., Jaitner B. K., Block C., Kalbitzer H. R., Wittinghofer A., and Herrmann C.. 1999. Thermodynamic and kinetic characterization of the interaction between the Ras binding domain of AF6 and members of the Ras subfamily. J. Biol. Chem. 274:13556–13562.
  • Lowe, D. G., and Goeddel D. V.. 1987. Heterologous expression and characterization of the human R-ras gene product. Mol. Cell. Biol. 7:2845–2856.
  • Lowy, D. R., Willumsen B. M.. 1993. Function and regulation of RAS. Annu. Rev. Biochem. 62:851–891.
  • Luo, Z., Diaz B., Marshall M. S., and Avruch J.. 1997. An intact Raf zinc finger is required for optimal binding to processed Ras and for ras-dependent Raf activation in situ. Mol. Cell. Biol. 17:46–53.
  • Maier, U., Babich A., and Nurnberg B.. 1999. Roles of non-catalytic subunits in Gβγ-induced activation of class I phosphoinositide 3-kinase isoforms β and γ. J. Biol. Chem. 274:29311–29317.
  • Marais, R., Light Y., Paterson H. F., Mason C. S., and Marshall C. J.. 1997. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J. Biol. Chem. 272:4378–4383.
  • Marte, B. M., Rodriguez-Viciana P., Wennstrom S., Warne P. H., and Downward J.. 1997. R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr. Biol. 7:63–70.
  • Movilla, N., Crespo P., and Bustelo X. R.. 1999. Signal transduction elements of TC21, an oncogenic member of the R-Ras subfamily of GTP-binding proteins. Oncogene 18:5860–5869.
  • Murphy, G. A., Graham S. M., Morita S., Reks S. E., Rogers-Graham K., Vojtek A., Kelley G. G., and Der C. J.. 2002. Involvement of phosphatidylinositol 3-kinase, but not RalGDS, in TC21/R-Ras2-mediated transformation. J. Biol. Chem. 277:9966–9975.
  • Ohba, Y., Kurokawa K., and Matsuda M.. 2003. Mechanism of the spatio-temporal regulation of Ras and Rap1. EMBO J. 22:859–869.
  • Ortiz-Vega, S., Khokhlatchev A., Nedwidek M., Zhang X. F., Dammann R., Pfeifer G. P., and Avruch J.. 2002. The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1. Oncogene 21:1381–1390.
  • Pacold, M. E., Suire S., Perisic O., Lara-Gonzalez S., Davis C. T., Walker E. H., Hawkins P. T., Stephens L., Eccleston J. F., and Williams R. L.. 2000. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103:931–943.
  • Ponting, C. P., and Benjamin D. R.. 1996. A novel family of Ras-binding domains. Trends Biochem. Sci. 21:422–425.
  • Pritchard, C. A., Samuels M. L., Bosch E., and McMahon M.. 1995. Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol. Cell. Biol. 15:6430–6442.
  • Quilliam, L. A., Castro A. F., Rogers-Graham K. S., Martin C. B., Der C. J., and Bi C.. 1999. M-Ras/R-Ras3, a transforming ras protein regulated by Sos1, GRF1, and p120 Ras GTPase-activating protein, interacts with the putative Ras effector AF6. J. Biol. Chem. 274:23850–23857.
  • Quilliam, L. A., Rebhun J. F., and Castro A. F.. 2002. A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Prog. Nucleic Acid Res. Mol. Biol. 71:391–444.
  • Radziwill, G., Erdmann R. A., Margelisch U., and Moelling K.. 2003. The Bcr kinase downregulates Ras signaling by phosphorylating AF-6 and binding to its PDZ domain. Mol. Cell. Biol. 13:4663–4672.
  • Rey, I., Taylor-Harris P., van Erp H., and Hall A.. 1994. R-ras interacts with rasGAP, neurofibromin and c-raf but does not regulate cell growth or differentiation. Oncogene 9:685–692.
  • Rodriguez-Viciana, P., and Downward J.. 2001. Ras activation of phosphatidylinositol 3-kinase and Akt. Methods Enzymol. 333:37–44.
  • Rong, R., He Q., Liu Y., Sheikh M. S., and Huang Y.. 2002. TC21 mediates transformation and cell survival via activation of phosphatidylinositol 3-kinase/Akt and NF-κB signaling pathway. Oncogene 21:1062–1070.
  • Rosario, M., Paterson H. F., and Marshall C. J.. 1999. Activation of the Raf/MAP kinase cascade by the Ras-related protein TC21 is required for the TC21-mediated transformation of NIH 3T3 cells. EMBO J. 18:1270–1279.
  • Rosario, M., Paterson H. F., and Marshall C. J.. 2001. Activation of the Ral and phosphatidylinositol 3′ kinase signaling pathways by the ras-related protein TC21. Mol. Cell. Biol. 21:3750–3762.
  • Rusyn, E. V., Reynolds E. R., Shao H., Grana T. M., Chan T. O., Andres D. A., and Cox A. D.. 2000. Rit, a non-lipid-modified Ras-related protein, transforms NIH3T3 cells without activating the ERK, JNK, p38 MAPK or PI3K/Akt pathways. Oncogene 19:4685–4694.
  • Saez, R., Chan A. M., Miki T., and Aaronson S. A.. 1994. Oncogenic activation of human R-ras by point mutations analogous to those of prototype H-ras oncogenes. Oncogene 9:2977–2982.
  • Self, A. J., Caron E., Paterson H. F., and Hall A.. 2001. Analysis of R-Ras signalling pathways. J. Cell Sci. 114:1357–1366.
  • Sewing, A., Wiseman B., Lloyd A. C., and Land H.. 1997. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol. Cell. Biol. 17:5588–5597.
  • Shao, H., and Andres D. A.. 2000. A novel RalGEF-like protein, RGL3, as a candidate effector for Rit and Ras. J. Biol. Chem. 275:26914–26924.
  • Shao, H., Kadono-Okuda K., Finlin B. S., and Andres D. A.. 1999. Biochemical characterization of the Ras-related GTPases Rit and Rin. Arch. Biochem. Biophys. 371:207–219.
  • Shima, F., Okada T., Kido M., Sen H., Tanaka Y., Tamada M., Hu C. D., Yamawaki-Kataoka Y., Kariya K., and Kataoka T.. 2000. Association of yeast adenylyl cyclase with cyclase-associated protein CAP forms a second Ras-binding site which mediates its Ras-dependent activation. Mol. Cell. Biol. 20:26–33.
  • Spaargaren, M., Martin G. A., McCormick F., Fernandez-Sarabia M. J., and Bischoff J. R.. 1994. The Ras-related protein R-ras interacts directly with Raf-1 in a GTP-dependent manner. Biochem. J. 300:303–307.
  • Spencer, M. L., Shao H., and Andres D. A.. 2002. Induction of neurite extension and survival in pheochromocytoma cells by the Rit GTPase. J. Biol. Chem. 277:20160–20168.
  • Stork, P. J. 2003. Does Rap1 deserve a bad rap? Trends Biochem. Sci. 28:267–275.
  • Suzuki, J., Kaziro Y., and Koide H.. 2000. Positive regulation of skeletal myogenesis by R-Ras. Oncogene 19:1138–1146.
  • Takai, Y., Sasaki T., and Matozaki T.. 2001. Small GTP-binding proteins. Physiol. Rev. 81:153–208.
  • Tall, G. G., Barbieri M. A., Stahl P. D., and Horazdovsky B. F.. 2001. Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev. Cell 1:73–82.
  • van Triest, M., de Rooij J., and Bos J. L.. 2001. Measurement of GTP-bound Ras-like GTPases by activation-specific probes. Methods Enzymol. 333:343–348.
  • Williams, J. G., Drugan J. K., Yi G. S., Clark G. J., Der C. J., and Campbell S. L.. 2000. Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions. J. Biol. Chem. 275:22172–22179.
  • Winkler, D. G., Johnson J. C., Cooper J. A., and Vojtek A. B.. 1997. Identification and characterization of mutations in Ha-Ras that selectively decrease binding to cRaf-1. J. Biol. Chem. 272:24402–24409.
  • Woods, D., Parry D., Cherwinski H., Bosch E., Lees E., and McMahon M.. 1997. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol. Cell. Biol. 17:5598–5611.
  • Wu, X., Noh S. J., Zhou G., Dixon J. E., and Guan K. L.. 1996. Selective activation of MEK1 but not MEK2 by A-Raf from epidermal growth factor-stimulated Hela cells. J. Biol. Chem. 271:3265–3271.
  • Zhang, Z., Vuori K., Wang H., Reed J. C., and Ruoslahti E.. 1996. Integrin activation by R-ras. Cell 85:61–69.
  • Zwartkruis, F. J., Wolthuis R. M., Nabben N. M., Franke B., and Bos J. L.. 1998. Extracellular signal-regulated activation of Rap1 fails to interfere in Ras effector signalling. EMBO J. 17:5905–5912.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.