75
Views
98
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Autophosphorylation of JAK2 on Tyrosines 221 and 570 Regulates Its Activity

, , , , &
Pages 4955-4967 | Received 04 Sep 2003, Accepted 09 Mar 2004, Published online: 27 Mar 2023

REFERENCES

  • Ali, S., and Ali S.. 1998. Prolactin receptor regulates Stat5 tyrosine phosphorylation and nuclear translocation by two separate pathways. J. Biol. Chem. 273:7709–7716.
  • Arai, A., Kanda E., Nosaka Y., Miyasaka N., and Miura O.. 2001. CrkL is recruited through its SH2 domain to the erythropoietin receptor and plays a role in Lyn-mediated receptor signaling. J. Biol. Chem. 276:33282–33290.
  • Argetsinger, L. S., Campbell G. S., Yang X., Witthuhn B. A., Silvennoinen O., Ihle J. N., and Carter-Su C.. 1993. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 74:237–244.
  • Argetsinger, L. S., and Carter-Su C.. 1996. Mechanism of signaling by growth hormone receptor. Physiol. Rev. 76:1089–1107.
  • Banks, A. S., Davis S. M., Bates S. H., and Myers M. G., Jr. 2000. Activation of downstream signals by the long form of the leptin receptor. J. Biol. Chem. 275:14563–14572.
  • Barber, D. L., Beattie B. K., Mason J. M., Nguyen M. H., Yoakim M., Neel B. G., D'Andrea A. D., and Frank D. A.. 2001. A common epitope is shared by activated signal transducer and activator of transcription-5 (STAT5) and the phosphorylated erythropoietin receptor: implications for the docking model of STAT activation. Blood 97:2230–2237.
  • Bjorbaek, C., Buchholz R. M., Davis S. M., Bates S. H., Pierroz D. D., Gu H., Neel B. G., Myers M. G., Jr., and Flier J. S.. 2001. Divergent roles of SHP-2 in ERK activation by leptin receptors. J. Biol. Chem. 276:4747–4755.
  • Boyle, W. J., van der Geer P., and Hunter T.. 1991. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201:110–148.
  • Carpenter, L. R., Farruggella T. J., Symes A., Karow M. L., Yancopoulos G. D., and Stahl N.. 1998. Enhancing leptin response by preventing SH2-containing phosphatase 2 interaction with Ob receptor. Proc. Natl. Acad. Sci. USA 95:6061–6066.
  • Carpino, N., Kobayashi R., Zang H., Takahashi Y., Jou S. T., Feng J., Nakajima H., and Ihle J. N.. 2002. Identification, cDNA cloning, and targeted deletion of p70, a novel, ubiquitously expressed SH3 domain-containing protein. Mol. Cell. Biol. 22:7491–7500.
  • Chen, C., and Okayama H.. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–2752.
  • Dijkers, P. F., van Dijk T. B., de Groot R. P., Raaijmakers J. A., Lammers J. W., Koenderman L., and Coffer P. J.. 1999. Regulation and function of protein kinase B and MAP kinase activation by the IL-5/GM-CSF/IL-3 receptor. Oncogene 18:3334–3342.
  • Feener, E. P., Rosario F., Dunn S. L., Stancheva Z., and Myers M. G., Jr. 2004. Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling. Mol. Cell. Biol. 24:4968-4978.
  • Feng, J., Witthuhn B. A., Matsuda T., Kohlhuber F., Kerr I. M., and Ihle J. N.. 1997. Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol. Cell. Biol. 17:2497–2501.
  • Frank, S. J., Yi W., Zhao Y., Goldsmith J. F., Gilliland G., Jiang J., Sakai I., and Kraft A. S.. 1995. Regions of the JAK2 tyrosine kinase required for coupling to the growth hormone receptor. J. Biol. Chem. 270:14776–14785.
  • Giordanetto, F., and Kroemer R. T.. 2002. Prediction of the structure of human Janus kinase 2 (JAK2) comprising JAK homology domains 1 through 7. Protein Eng. 15:727–737.
  • Girault, J. A., Labesse G., Mornon J. P., and Callebaut I.. 1999. The N-termini of FAK and JAKs contain divergent band 4.1 domains. Trends Biochem. Sci. 24:54–57.
  • Gobom, J., Nordhoff E., Mirgorodskaya E., Ekman R., and Roepstorff P.. 1999. Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 34:105–116.
  • Gouilleux, F., Pallard C., Dusanter-Fourt I., Wakao H., Haldosen L. A., Norstedt G., Levy D., and Groner B.. 1995. Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity. EMBO J. 14:2005–2013.
  • Hamada, K., Shimizu T., Matsui T., Tsukita S., and Hakoshima T.. 2000. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J. 19:4449–4462.
  • Haq, R., Halupa A., Beattie B. K., Mason J. M., Zanke B. W., and Barber D. L.. 2002. Regulation of erythropoietin-induced STAT serine phosphorylation by distinct mitogen-activated protein kinases. J. Biol. Chem. 277:17359–17366.
  • Harpur, A. G., Andres A.-C., Ziemiecki A., Aston R. R., and Wilks A. F.. 1992. JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene 7:1347–1353.
  • He, K. X. Wang, Jiang J., Guan R., Bernstein K. E., Sayeski P. P., and Frank S. J.. 2004. Janus kinase 2 determinants for growth hormone receptor association, surface assembly, and signaling. Mol. Endocrinol. 17:2211–2227.
  • Herrington, J., Rui L., Luo G., Yu-Lee L.-Y., and Carter-Su C.. 1999. A functional DNA-binding domain is required for growth hormone-induced nuclear localization of Stat5B. J. Biol. Chem. 274:5138–5145.
  • Huang, L. J., Constantinescu S. N., and Lodish H. F.. 2001. The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol. Cell 8:1327–1338.
  • Kim, S. O., Loesch K., Wang X., Jiang J., Mei L., Cunnick J. M., Wu J., and Frank S. J.. 2002. A role for Grb2-associated binder-1 in growth hormone signaling. Endocrinology 143:4856–4867.
  • Klingmuller, U., Bergelson S., Hsiao J. G., and Lodish H. F.. 1996. Multiple tyrosine residues in the cytosolic domain of the erythropoietin receptor promote activation of STAT5. Proc. Natl. Acad. Sci. USA 93:8324–8328.
  • Klingmuller, U., Lorenz U., Cantley L. C., Neel B. G., and Lodish H. F.. 1995. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80:729–738.
  • Kohlhuber, F., Rogers N. C., Watling D., Feng J., Guschin D., Briscoe J., Witthuhn B. A., Kotenko S. V., Pestka S., Stark G. R., Ihle J. N., and Kerr I. M.. 1997. A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses. Mol. Cell. Biol. 17:695–706.
  • Kurzer, J. H., Argetsinger L. S., Zhou Y.-J., Kouadio J.-L., O'Shea J. J., and Carter-Su C.. 2004. Tyrosine 813 is a site of JAK2 autophosphorylation critical for activation of JAK2 by SH2-Bβ. Mol. Cell. Biol. 24:4557–4570.
  • Lindauer, K., Loerting T., Liedl K. R., and Kroemer R. T.. 2001. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Eng. 14:27–37.
  • Murata, T., Noguchi P. D., and Puri R. K.. 1995. Receptors for interleukin (IL)-4 do not associate with the common gamma chain, and IL-4 induces the phosphorylation of JAK2 tyrosine kinase in human colon carcinoma cells. J. Biol. Chem. 270:30829–30836.
  • Myers, M. P., Andersen J. N., Cheng A., Tremblay M. L., Horvath C. M., Parisien J. P., Salmeen A., Barford D., and Tonks N. K.. 2001. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J. Biol. Chem. 276:47771–47774.
  • Neubauer, G., and Mann M.. 1999. Mapping of phosphorylation sites of gel-isolated proteins by nanoelectrospray tandem mass spectrometry: potentials and limitations. Anal. Chem. 71:235–242.
  • O'Brien, K. B., Argetsinger L. S., Diakonova M., and Carter-Su C.. 2003. YXXL motifs in SH2-Bβ are phosphorylated by JAK2, JAK1, and platelet-derived growth factor receptor and are required for membrane ruffling. J. Biol. Chem. 278:11970–11978.
  • Parganas, E., Wang D., Stravopodis D., Topham D. J., Marine J. C., Teglund S., Vanin E. F., Bodner S., Colamonici O. R., van Deursen J. M., Grosveld G., and Ihle J. N.. 1998. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93:385–395.
  • Parham, C., Chirica M., Timans J., Vaisberg E., Travis M., Cheung J., Pflanz S., Zhang R., Singh K. P., Vega F., To W., Wagner J., O'Farrell A. M., McClanahan T., Zurawski S., Hannum C., Gorman D., Rennick D. M., Kastelein R. A., de Waal Malefyt R., and Moore K. W.. 2002. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol. 168:5699–5708.
  • Pearson, M. A., Reczek D., Bretscher A., and Karplus P. A.. 2000. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101:259–270.
  • Pelletier, S., Duhamel F., Coulombe P., Popoff M. R., and Meloche S.. 2003. Rho family GTPases are required for activation of Jak/STAT signaling by G protein-coupled receptors. Mol. Cell. Biol. 23:1316–1333.
  • Pratt, J. C., Weiss M., Sieff C. A., Shoelson S. E., Burakoff S. J., and Ravichandran K. S.. 1996. Evidence for a physical association between the Shc-PTB domain and the beta c chain of the granulocyte-macrophage colony-stimulating factor receptor. J. Biol. Chem. 271:12137–12140.
  • Roy, B., and Cathcart M. K.. 1998. Induction of 15-lipoxygenase expression by IL-13 requires tyrosine phosphorylation of Jak2 and Tyk2 in human monocytes. J. Biol. Chem. 273:32023–32029.
  • Rui, L., and Carter-Su C.. 1999. Identification of SH2-Bβ as a potent cytoplasmic activator of the tyrosine kinase Janus kinase 2. Proc. Natl. Acad. Sci. USA 96:7172–7177.
  • Rui, L., Mathews L. S., Hotta K., Gustafson T. A., and Carter-Su C.. 1997. Identification of SH2-Bβ as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol. Cell. Biol. 17:6633–6644.
  • Saad, M. J., Carvalho C. R., Thirone A. C., and Velloso L. A.. 1996. Insulin induces tyrosine phosphorylation of JAK2 in insulin-sensitive tissues of the intact rat. J. Biol. Chem. 271:22100–22104.
  • Saharinen, P., Takaluoma K., and Silvennoinen O.. 2000. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol. Cell. Biol. 20:3387–3395.
  • Sakai, I., and Kraft A. S.. 1997. The kinase domain of Jak2 mediates induction of bcl-2 and delays cell death in hematopoietic cells. J. Biol. Chem. 272:12350–12358.
  • Sakurai, Y., Arai K., and Watanabe S.. 2000. In vitro analysis of STAT5 activation by granulocyte-macrophage colony-stimulating factor. Genes Cells 5:937–947.
  • Sasaki, A., Yasukawa H., Suzuki A., Kamizono S., Syoda T., Kinjyo I., Sasaki M., Johnston J. A., and Yoshimura A.. 1999. Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells 4:339–351.
  • Sayeski, P. P., Ali M. S., Frank S. J., and Bernstein K. E.. 2001. The angiotensin II-dependent nuclear translocation of Stat1 is mediated by the Jak2 protein motif 231YRFRR. J. Biol. Chem. 276:10556–10563.
  • Shevchenko, A., Wilm M., Vorm O., and Mann M.. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68:850–858.
  • Steen, H., Kuster B., Fernandez M., Pandey A., and Mann M.. 2001. Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. Anal. Chem. 73:1440–1448.
  • Steen, H., Kuster B., Fernandez M., Pandey A., and Mann M.. 2002. Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J. Biol. Chem. 277:1031–1039.
  • Stensballe, A., Andersen S., and Jensen O. N.. 2001. Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. Proteomics 1:207–222.
  • Stofega, M. R., Argetsinger L. S., Wang H., Ullrich A., and Carter-Su C.. 2000. Negative regulation of growth hormone receptor/JAK2 signaling by signal regulatory protein α. J. Biol. Chem. 275:28222–28229.
  • Stofega, M. R., Herrington J., Billestrup N., and Carter-Su C.. 2000. Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B. Mol. Endocrinol. 14:1338–1350.
  • Tanner, J. W., Chen W., Young R. L., Longmore G. D., and Shaw A. S.. 1995. The conserved box 1 motif of cytokine receptors is required for association with JAK kinases. J. Biol. Chem. 270:6523–6530.
  • Wakioka, T., Sasaki A., Mitsui K., Yokouchi M., Inoue A., Komiya S., and Yoshimura A.. 1999. APS, an adaptor protein containing Pleckstrin homology (PH) and Src homology-2 (SH2) domains inhibits the JAK-STAT pathway in collaboration with c-Cbl. Leukemia 13:760–767.
  • Wang, X., Darus C. J., Xu B. C., and Kopchick J. J.. 1996. Identification of growth hormone receptor (GHR) tyrosine residues required for GHR phosphorylation and JAK2 and STAT5 activation. Mol. Endocrinol. 10:1249–1260.
  • Yamauchi, T., Ueki K., Tobe K., Tamemoto H., Sekine N., Wada M., Honjo M., Takahashi M., Takahashi T., Hirai H., Tsushima T., Akanuma Y., Fujita T., Komuro I., Yazaki Y., and Kadowaki T.. 1998. Growth hormone-induced tyrosine phosphorylation of EGF receptor as an essential element leading to MAP kinase activation and gene expression. Endocr. J. 45:S27–S31.
  • Yasukawa, H., Misawa H., Sakamoto H., Masuhara M., Sasaki A., Wakioka T., Ohtsuka S., Imaizumi T., Matsuda T., Ihle J. N., and Yoshimura A.. 1999. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J. 18:1309–1320.
  • Yin, T., Shen R., Feng G. S., and Yang Y. C.. 1997. Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases. J. Biol. Chem. 272:1032–1037.
  • Zhao, Y., Wagner F., Frank S. J., and Kraft A. S.. 1995. The amino-terminal portion of the JAK2 protein kinase is necessary for binding and phosphorylation of the granulocyte-macrophage colony-stimulating factor receptor beta c chain. J. Biol. Chem. 270:13814–13818.
  • Zhou, Y. J., Chen M., Cusack N. A., Kimmel L. H., Magnuson K. S., Boyd J. G., Lin W., Roberts J. L., Lengi A., Buckley R. H., Geahlen R. L., Candotti F., Gadina M., Changelian P. S., and O'Shea J. J.. 2001. Unexpected effects of FERM domain mutations on catalytic activity of Jak3: structural implication for Janus kinases. Mol. Cell 8:959–969.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.