17
Views
32
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

A New Saccharomyces cerevisiae Strain with a Mutant Smt3-Deconjugating Ulp1 Protein Is Affected in DNA Replication and Requires Srs2 and Homologous Recombination for Its Viability

, , , , , & show all
Pages 5130-5143 | Received 24 Dec 2003, Accepted 22 Mar 2004, Published online: 27 Mar 2023

REFERENCES

  • Aboussekhra, A., Chanet R., Adjiri A., and Fabre F.. 1992. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol. Cell. Biol. 12:3224–3234.
  • Aboussekhra, A., Chanet R., Zgaga Z., Cassier-Chauvat C., Heude M., and Fabre F.. 1989. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res. 17:7211–7219.
  • Aguilera, A., and Klein H. L.. 1988. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119:779–790.
  • Alexeev, A., Mazin A., and Kowalczykowski S. C.. 2003. Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nat. Struct. Biol. 10:182–186.
  • Bai, Y., and Symington L. S.. 1996. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 10:2025–2037.
  • Bender, A., and Pringle J. R.. 1991. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:1295–1305.
  • Boulton, S. J., and Jackson S. P.. 1998. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17:1819–1828.
  • Boulton, S. J., and Jackson S. P.. 1996. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double- strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15:5093–5103.
  • Chanet, R., Heude M., Adjiri A., Maloisel L., and Fabre F.. 1996. Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol. Cell. Biol. 16:4782–4789.
  • Clever, B., Interthal H., Schmuckli-Maurer J., King J., Sigrist M., and Heyer W. D.. 1997. Recombinational repair in yeast: functional interactions between Rad51 and Rad54 proteins. EMBO J. 16:2535–2544.
  • Cullin, C., and Pompon D.. 1988. Synthesis of functional mouse cytochromes P-450 P1 and chimeric P-450 P3-1 in the yeast Saccharomyces cerevisiae. Gene 65:203–217.
  • Debrauwere, H., Loeillet S., Lin W., Lopes J., and Nicolas A.. 2001. Links between replication and recombination in Saccharomyces cerevisiae: a hypersensitive requirement for homologous recombination in the absence of Rad27 activity. Proc. Natl. Acad. Sci. USA 98:8263–8269.
  • Fabre, F., Chan A., Heyer W. D., and Gangloff S.. 2002. Alternate pathways involving Sgs1/Top3, Mus81/ Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl. Acad. Sci. USA 99:16887–16892.
  • Gangloff, S., Soustelle C., and Fabre F.. 2000. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat. Genet. 25:192–194.
  • Giot, L., Chanet R., Simon M., Facca C., and Faye G.. 1997. Involvement of the yeast DNA polymerase delta in DNA repair in vivo. Genetics 146:1239–1251.
  • Hays, S. L., Firmenich A. A., and Berg P.. 1995. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc. Natl. Acad. Sci. USA 92:6925–6929.
  • Heude, M., Chanet R., and Fabre F.. 1995. Regulation of the Saccharomyces cerevisiae Srs2 helicase during the mitotic cell cycle, meiosis and after irradiation. Mol. Gen. Genet. 248:59–68.
  • Heude, M., and Fabre F.. 1993. a/α-control of DNA repair in the yeast Saccharomyces cerevisiae: genetic and physiological aspects. Genetics 133:489–498.
  • Hickson, I. D. 2003. RecQ helicases: caretakers of the genome. Nat. Rev. Cancer 3:169–178.
  • Hishida, T., Ohno T., Iwasaki H., and Shinagawa H.. 2002. Saccharomyces cerevisiae MGS1 is essential in strains deficient in the RAD6-dependent DNA damage tolerance pathway. EMBO J. 21:2019–2029.
  • Hoege, C., Pfander B., Moldovan G. L., Pyrowolakis G., and Jentsch S.. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141.
  • Holmes, A. M., and Haber J. E.. 1999. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 96:415–424.
  • Huang, M. E., de Calignon A., Nicolas A., and Galibert F.. 2000. POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase delta, defines a link between DNA replication and the mutagenic bypass repair pathway. Curr. Genet. 38:178–187.
  • Kawabe, Y., Seki M., Seki T., Wang W. S., Imamura O., Furuichi Y., Saitoh H., and Enomoto T.. 2000. Covalent modification of the Werner's syndrome gene product with the ubiquitin-related protein, SUMO-1. J. Biol. Chem. 275:20963–20966.
  • Kaytor, M. D., Nguyen M., and Livingston D. M.. 1995. The complexity of the interaction between RAD52 and SRS2. Genetics 140:1441–1442.
  • Klein, H. L. 2001. Mutations in recombinational repair and in checkpoint control genes suppress the lethal combination of srs2Δ with other DNA repair genes in Saccharomyces cerevisiae. Genetics 157:557–565.
  • Krejci, L., Van Komen S., Li Y., Villemain J., Reddy M. S., Klein H., Ellenberger T., and Sung P.. 2003. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423:305–309.
  • Laskowski, W. 1960. Inaktivierungsversuche mit hefestâmmen verschiedenen ploidiegrades. I. Aufbau homozygoten stämme und dosiseffektkürven für ionisierende strahlen, UV und organische peroxyde. Z. Naturforsch. 1960:495–506.
  • Lawrence, C. W., and Christensen R. B.. 1979. Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J. Bacteriol. 139:866–887.
  • Lea, D. E., and Coulson C. A.. 1948. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49:264–284.
  • Lehembre, F., Badenhorst P., Muller S., Travers A., Schweisguth F., and Dejean A.. 2000. Covalent modification of the transcriptional repressor tramtrack by the ubiquitin-related protein Smt3 in Drosophila flies. Mol. Cell. Biol. 20:1072–1082.
  • Li, S. J., and Hochstrasser M.. 1999. A new protease required for cell-cycle progression in yeast. Nature 398:246–251.
  • Li, S. J., and Hochstrasser M.. 2000. The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol. Cell. Biol. 20:2367–2377.
  • Li, W., Hesabi B., Babbo A., Pacione C., Liu J., Chen D. J., Nickoloff J. A., and Shen Z.. 2000. Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein. Nucleic Acids Res. 28:1145–1153.
  • Li, X., Li J., Harrington J., Lieber M. R., and Burgers P. M.. 1995. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J. Biol. Chem. 270:22109–22112.
  • Liberi, G., Chiolo I., Pellicioli A., Lopes M., Plevani P., Muzi-Falconi M., and Foiani M.. 2000. Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mec1-dependent pathway and Cdk1 activity. EMBO J. 19:5027–5038.
  • Lieber, M. R. 1997. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19:233–240.
  • Mazin, A. V., Alexeev A. A., and Kowalczykowski S. C.. 2003. A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. J. Biol. Chem. 278:14029–14036.
  • McGlynn, P., and Lloyd R. G.. 2002. Recombinational repair and restart of damaged replication forks. Nat. Rev. Mol. Cell. Biol. 3:859–870.
  • Melchior, F. 2000. SUMO—nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16:591–626.
  • Merrill, B. J., and Holm C.. 1998. The RAD52 recombinational repair pathway is essential in pol30 (PCNA) mutants that accumulate small single-stranded DNA fragments during DNA synthesis. Genetics 148:611–624.
  • Milne, G. T., Ho T., and Weaver D. T.. 1995. Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics 139:1189–1199.
  • Moore, J. K., and Haber J. E.. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2164–2173.
  • Mortimer, R. K. 1958. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat. Res. 9:312–326.
  • Mossessova, E., and Lima C. D.. 2000. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5:865–876.
  • Muller, S., Hoege C., Pyrowolakis G., and Jentsch S.. 2001. SUMO, ubiquitin's mysterious cousin. Nat. Rev. Mol. Cell. Biol. 2:202–210.
  • Palladino, F., and Klein H. L.. 1992. Analysis of mitotic and meiotic defects in Saccharomyces cerevisiae SRS2 DNA helicase mutants. Genetics 132:23–37.
  • Reagan, M. S., Pittenger C., Siede W., and Friedberg E. C.. 1995. Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. J. Bacteriol. 177:364–371.
  • Resnick, M. A., Stasiewicz S., and Game J. C.. 1983. Meiotic DNA metabolism in wild-type and excision-deficient yeast following UV exposure. Genetics 104:583–601.
  • Rong, L., and Klein H. L.. 1993. Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268:1252–1259.
  • Saeki, T., Machida I., and Nakai S.. 1980. Genetic control of diploid recovery after gamma-irradiation in the yeast Saccharomyces cerevisiae. Mutat. Res. 73:251–265.
  • Schild, D. 1995. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 140:115–127.
  • Seeler, J. S., and Dejean A.. 2001. SUMO: of branched proteins and nuclear bodies. Oncogene 20:7243–7249.
  • Shen, Z., Pardington-Purtymun P. E., Comeaux J. C., Moyzis R. K., and Chen D. J.. 1996. Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system. Genomics 37:183–186.
  • Shen, Z., Pardington-Purtymun P. E., Comeaux J. C., Moyzis R. K., and Chen D. J.. 1996. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36:271–279.
  • Sherman, F., Fink G. R., and Lawrence C. W.. 1974. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Shiio, Y., and Eisenman R. N.. 2003. Histone sumoylation is associated with transcriptional repression. Proc. Natl. Acad. Sci. USA 100:13225–13230.
  • Signon, L., Malkova A., Naylor M. L., Klein H., and Haber J. E.. 2001. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol. Cell. Biol. 21:2048–2056.
  • Sommers, C. H., Miller E. J., Dujon B., Prakash S., and Prakash L.. 1995. Conditional lethality of null mutations in RTH1 that encodes the yeast counterpart of a mammalian 5′-to-3′ exonuclease required for lagging strand DNA synthesis in reconstituted systems. J. Biol. Chem. 270:4193–4196.
  • Stelter, P., and Ulrich H. D.. 2003. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425:188–191.
  • Sugawara, N., Ira G., and Haber J. E.. 2000. DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol. Cell. Biol. 20:5300–5309.
  • Symington, L. S. 1998. Homologous recombination is required for the viability of rad27 mutants. Nucleic Acids Res. 26:5589–5595.
  • Taylor, D. L., Ho J. C., Oliver A., and Watts F. Z.. 2002. Cell-cycle-dependent localisation of Ulp1, a Schizosaccharomyces pombe Pmt3 (SUMO)-specific protease. J. Cell Sci. 115:1113–1122.
  • Tishkoff, D. X., Filosi N., Gaida G. M., and Kolodner R. D.. 1997. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88:253–263.
  • Uetz, P., Giot L., Cagney G., Mansfield T. A., Judson R. S., Knight J. R., Lockshon D., Narayan V., Srinivasan M., Pochart P., Qureshi-Emili A., Li Y., Godwin B., Conover D., Kalbfleisch T., Vijayadamodar G., Yang M., Johnston M., Fields S., and Rothberg J. M.. 2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627.
  • Veaute, X., Jeusset J., Soustelle C., Kowalczykowski S. C., Le Cam E., and Fabre F.. 2003. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309–312.
  • Vernis, L., Piskur J., and Diffley J. F.. 2003. Reconstitution of an efficient thymidine salvage pathway in Saccharomyces cerevisiae. Nucleic Acids Res. 31:e120.
  • Wach, A., Brachat A., Pohlmann R., and Philippsen P.. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808.
  • Warbrick, E. 2000. The puzzle of PCNA's many partners. Bioessays 22:997–1006.
  • Wu, X., and Wang Z.. 1999. Relationships between yeast Rad27 and Apn1 in response to apurinic/apyrimidinic (AP) sites in DNA. Nucleic Acids Res. 27:956–962.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.