36
Views
127
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Unconventional Myosin Myo1c Promotes Membrane Fusion in a Regulated Exocytic Pathway

, , , , , & show all
Pages 5447-5458 | Received 17 Oct 2003, Accepted 19 Mar 2004, Published online: 27 Mar 2023

REFERENCES

  • Bennett, M. K., Garcia-Arraras J. E., Elferink L. A., Peterson K., Fleming A. M., Hazuka C. D., and Scheller R. H.. 1993. The syntaxin family of vesicular transport receptors. Cell 74:863–873.
  • Borisy, G. G., and Svitkina T. M.. 2000. Actin machinery: pushing the envelope. Curr. Opin. Cell Biol. 12:104–112.
  • Bose, A., Guilherme A., Robida S. I., Nicoloro S. M. C., Zhou Q. L., Jiang Z. Y., Pomerleau D. P., and Czech M. P.. 2002. Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c. Nature 420:821–824.
  • Bretscher, M. S., and Aguado-Velasco C.. 1998. EGF induces recycling membrane to form ruffles. Curr. Biol. 8:721–724.
  • Broadie, K., Prokop A., Bellen H. J., O'Kane C. J., Schulze K. L., and Sweeney S. T.. 1995. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15:663–673.
  • Bryant, N. J., Govers R., and James D. E.. 2002. Regulated transport of the glucose transporter GLUT4. Nat. Rev. Mol. Cell Biol. 3:267–277.
  • Cain, C. C., Trimble W. S., and Lienhard G. E.. 1992. Members of the VAMP family of synaptic vesicle proteins are components of glucose transporter-containing vesicles from rat adipocytes. J. Biol. Chem. 267:11681–11684.
  • Carrington, W. A., Lynch R. M., Moore E. D., Isenberg G., Fogarty K. E., and Fay F. S.. 1995. Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. Science 268:1483–1487.
  • Deitcher, D. L., Ueda A., Stewart B. A., Burgess R. W., Kidokoro Y., and Schwarz T. L.. 1998. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J. Neurosci. 18:2028–2039.
  • Dong, L. Q., Landa L. R., Wick M. J., Zhu L., Mukai H., Ono Y., and Liu F.. 2000. Phosphorylation of protein kinase N by phosphoinositide-dependent protein kinase-1 mediates insulin signals to the actin cytoskeleton. Proc. Natl. Acad. Sci. USA 97:5089–5094.
  • Evangelista, M., Klebl B. M., Tong A. H., Webb B. A., Leeuw T., Leberer E., Whiteway M., Thomas D. Y., and Boone C.. 2000. A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex. J. Cell Biol. 148:353–362.
  • Faty, M., Fink M., and Barral Y.. 2002. Septins: a ring to part mother and daughter. Curr. Genet. 41:123–131.
  • Gerst, J. E. 1999. SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell. Mol. Life Sci. 55:707–734.
  • Imamura, T., Huang J., Usui I., Satoh H., Bever J., and Olefsky J. M.. 2003. Insulin-induced GLUT4 translocation involves protein kinase C-lambda-mediated functional coupling between Rab4 and the motor protein kinesin. Mol. Cell. Biol. 23:4892–4900.
  • Jahn, R., and Sudhof T. C.. 1999. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68:863–911.
  • Jahn, R., Lang T., and Sudhof T. C.. 2003. Membrane fusion. Cell 112:519–533.
  • Jiang, Z. Y., Chawla A., Bose A., Way M., and Czech M. P.. 2002. A phosphatidylinositol 3-kinase-independent insulin signaling pathway to N-WASP/Arp2/3/F-actin required for GLUT4 glucose transporter recycling. J. Biol. Chem. 277:509–515.
  • Kanzaki, M., and Pessin J. E.. 2001. Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J. Biol. Chem. 276:42436–42444.
  • Karylowski, O., Zeigerer A., Cohen A., and McGraw T. E.. 2004. GLUT4 is retained by an intracellular cycle of vesicle formation and fusion with endosomes. Mol. Biol. Cell 15:870–882.
  • Kotani, K., Hara K., Kotani K., Yonezawa K., and Kasuga M.. 1995. Phosphoinositide 3-kinase as an upstream regulator of the small GTP-binding protein Rac in the insulin signaling of membrane ruffling. Biochem. Biophys. Res. Commun. 208:985–990.
  • Lampson, M. A., Racz A., Cushman S. W., and McGraw T. E.. 2000. Demonstration of insulin-responsive trafficking of GLUT4 and vpTR in fibroblasts. J. Cell Sci. 113:4065–4076.
  • Martin, S. S., Haruta T., Morris A. J., Klippel A., Williams L. T., and Olefsky J. M.. 1996. Activated phosphatidylinositol 3-kinase is sufficient to mediate actin rearrangement and GLUT4 translocation in 3T3-L1 adipocytes. J. Biol. Chem. 271:17605–17608.
  • Mulvihill, D. P., Pollard P. J., Win T. Z., and Hyams J. S.. 2001. Myosin V-mediated vacuole distribution and fusion in fission yeast. Curr. Biol. 11:1124–1127.
  • Okada, T., Kawano Y., Sakakibara T., Hazeki O., and Ui M.. 1994. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J. Biol. Chem. 269:3568–3573.
  • Patel, N., Rudich A., Khayat Z. A., Garg R., and Klip A.. 2003. Intracellular segregation of phosphatidylinositol-3,4,5-trisphosphate by insulin-dependent actin remodeling in L6 skeletal muscle cells. Mol. Cell. Biol. 23:4611–4626.
  • Patki, V., Buxton J., Chawla A., Lifshitz L., Fogarty K., Carrington W., Tuft R., and Corvera S.. 2001. Insulin action on GLUT4 traffic visualized in single 3T3-l1 adipocytes by using ultra-fast microscopy. Mol. Biol. Cell 12:129–141.
  • Pfeffer, S. 2001. Vesicle tethering factors united. Mol. Cell 8:729–730.
  • Pfeffer, S. R. 1999. Transport-vesicle targeting: tethers before SNAREs. Nat. Cell Biol. 1:E17–E22.
  • Reizes, O., Barylko B., Li C., Sudhof T. C., and Albanesi J. P.. 1994. Domain structure of a mammalian myosin I beta. Proc. Natl. Acad. Sci. USA 91:6349–6353.
  • Rizzuto, R., Carrington W., and Tuft R. A.. 1998. Digital imaging microscopy of living cells. Trends Cell Biol. 8:288–292.
  • Rudich, A., and Klip A.. 2003. Push/pull mechanisms of GLUT4 traffic in muscle cells. Acta Physiol. Scand. 178:297–308.
  • Saitoe, M., Schwarz T. L., Umbach J. A., Gundersen C. B., and Kidokoro Y.. 2001. Absence of junctional glutamate receptor clusters in Drosophila mutants lacking spontaneous transmitter release. Science 293:514–517.
  • Semiz, S., Park J. G., Nicoloro S. M. C., Furcinitti P., Zhang C., Chawla A., Leszyk J., and Czech M. P.. 2003. Conventional kinesin KIF5B mediates insulin-stimulated GLUT4 movements on microtubules. EMBO J. 22:2387–2399.
  • Simpson, F., Whitehead J. P., and James D. E.. 2001. GLUT4—at the cross roads between membrane trafficking and signal transduction. Traffic 2:2–11.
  • Sollner, T. H. 2003. Regulated exocytosis and SNARE function. Mol. Membr. Biol. 20:209–220.
  • Sollner, T. H., and Rothman J. E.. 1996. Molecular machinery mediating vesicle budding, docking and fusion. Experientia 52:1021–1025.
  • Tong, P., Khayat Z. A., Huang C., Patel N., Ueyama A., and Klip A.. 2001. Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles. J. Clin. Investig. 108:371–381.
  • Toonen, R. F., and Verhage M.. 2003. Vesicle trafficking: pleasure and pain from SM genes. Trends Cell Biol. 13:177–186.
  • Vale, R. D. 2003. The molecular motor toolbox for intracellular transport. Cell 112:467–480.
  • Wang, Y., Sugita S., and Sudhof T. C.. 2000. The RIM/NIM family of neuronal C2 domain proteins. Interactions with Rab3 and a new class of Src homology 3 domain proteins. J. Biol. Chem. 275:20033–20044.
  • Yang, C., Coker K. J., Kim J. K., Mora S., Thurmond D. C., Davis A. C., Yang B., Williamson R. A., Shulman G. I., and Pessin J. E.. 2001. Syntaxin 4 heterozygous knockout mice develop muscle insulin resistance. J. Clin. Investig. 107:1311–1318.
  • Yoshihara, M., Ueda A., Zhang D., Deitcher D. L., Schwarz T. L., and Kidokoro Y.. 1999. Selective effects of neuronal-synaptobrevin mutations on transmitter release evoked by sustained versus transient Ca2+ increases and by cAMP. J. Neurosci. 19:2432–2441.
  • Young, A., Tuft R., Carrington W., and Doxsey S. J.. 1999. Centrosome dynamics in living cells. Methods Cell Biol. 58:223–238.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.