30
Views
27
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Tandem Repeat Hypothesis in Imprinting: Deletion of a Conserved Direct Repeat Element Upstream of H19 Has No Effect on Imprinting in the Igf2-H19 Region

, , &
Pages 5650-5656 | Received 03 Dec 2003, Accepted 09 Apr 2004, Published online: 27 Mar 2023

REFERENCES

  • Aravin, A. A., Naumova N. M., Tulin A. V., Vagin V. V., Rozovsky Y. M., and Gvozdev V. A.. 2001. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11:1017–1027.
  • Arnaud, P., Monk D., Hitchins M., Gordon E., Dean W., Beechey C. V., Peters J., Craigen W., Preece M., Stanier P., Moore G. E., and Kelsey G.. 2003. Conserved methylation imprints in the human and mouse GRB10 genes with divergent allelic expression suggests differential reading of the same mark. Hum. Mol. Genet. 12:1005–1019.
  • Barlow, D. P. 1993. Methylation and imprinting: from host defense to gene regulation? Science 260:309–310.
  • Bartolomei, M. S., Webber A. L., Brunkow M. E., and Tilghman S. M.. 1993. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7:1663–1673.
  • Bell, A. C., and Felsenfeld G.. 2000. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405:482–485.
  • Bourc'his, D., Xu G. L., Lin C. S., Bollman B., and Bestor T. H.. 2001. Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539.
  • Cerrato, F., Dean W., Davies K., Kagotani K., Mitsuya K., Okumura K., Riccio A., and Reik W.. 2003. Paternal imprints can be established on the maternal Igf2-H19 locus without altering replication timing of DNA. Hum. Mol. Genet. 12:3123–3132.
  • Church, G. M., and Gilbert W.. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81:1991–1995.
  • Constancia, M., Dean W., Lopes S., Moore T., Kelsey G., and Reik W.. 2000. Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19. Nat. Genet. 26:203–206.
  • Cranston, M. J., Spinka T. L., Elson D. A., and Bartolomei M. S.. 2001. Elucidation of the minimal sequence required to imprint H19 transgenes. Genomics 73:98–107.
  • Davies, K., Bowden L., Smith P., Dean W., Hill D., Furuumi H., Sasaki H., Cattanach B., and Reik W.. 2002. Disruption of mesodermal enhancers for Igf2 in the minute mutant. Development 129:1657–1668.
  • Dean, W., Bowden L., Aitchison A., Klose J., Moore T., Meneses J. J., Reik W., and Feil R.. 1998. Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 125:2273–2282.
  • Elson, D. A., and Bartolomei M. S.. 1997. A 5′ differentially methylated sequence and the 3′-flanking region are necessary for H19 transgene imprinting. Mol. Cell. Biol. 17:309–317.
  • Fedoriw, A. M., Stein P., Svoboda P., Schultz R. M., and Bartolomei M. S.. 2004. Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science 303:238–240.
  • Feil, R., Charlton J., Bird A. P., Walter J., and Reik W.. 1994. Methylation analysis on individual chromosomes: improved protocol for bisulphite genomic sequencing. Nucleic Acids Res. 22:695–696.
  • Feinberg, A. P., and Vogelstein B.. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Hark, A. T., Schoenherr C. J., Katz D. J., Ingram R. S., Levorse J. M., and Tilghman S. M.. 2000. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489.
  • Hata, K., Okano M., Lei H., and Li E.. 2002. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:1983–1993.
  • Kaffer, C. R., Srivastava M., Park K. Y., Ives E., Hsieh S., Batlle J., Grinberg A., Huang S. P., and Pfeifer K.. 2000. A transcriptional insulator at the imprinted H19/Igf2 locus. Genes Dev. 14:1908–1919.
  • Kanduri, C., Pant V., Loukinov D., Pugacheva E., Qi C. F., Wolffe A., Ohlsson R., and Lobanenkov V. V.. 2000. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr. Biol. 10:853–856.
  • Laird, P. W., Zijderveld A., Linders K., Rudnicki M. A., Jaenisch R., and Berns A.. 1991. Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 19:4293.
  • Lehnertz, B., Ueda Y., Derijck A. A., Braunschweig U., Perez-Burgos L., Kubicek S., Chen T., Li E., Jenuwein T., and Peters A. H.. 2003. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13:1192–1200.
  • Leighton, P. A., Ingram R. S., Eggenschwiler J., Efstratiadis A., and Tilghman S. M.. 1995. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375:34–39.
  • Leighton, P. A., Saam J. R., Ingram R. S., Stewart C. L., and Tilghman S. M.. 1995. An enhancer deletion affects both H19 and Igf2 expression. Genes Dev. 9:2079–2089.
  • Li, E., Beard C., Forster A. C., Bestor T. H., and Jaenisch R.. 1993. DNA methylation, genomic imprinting, and mammalian development. Cold Spring Harbor Symp. Quant. Biol. 58:297–305.
  • Martienssen, R. A. 2003. Maintenance of heterochromatin by RNA interference of tandem repeats. Nat. Genet. 35:213–214.
  • Neumann, B., Kubicka P., and Barlow D. P.. 1995. Characteristics of imprinted genes. Nat. Genet. 9:12–13.
  • Okamura, K., Hagiwara-Takeuchi Y., Li T., Vu T. H., Hirai M., Hattori M., Sakaki Y., Hoffman A. R., and Ito T.. 2000. Comparative genome analysis of the mouse imprinted gene impact and its nonimprinted human homolog IMPACT: toward the structural basis for species-specific imprinting. Genome Res. 10:1878–1889.
  • Olek, A., Oswald J., and Walter J.. 1996. A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. 24:5064–5066.
  • Pant, V., Mariano P., Kanduri C., Mattsson A., Lobanenkov V., Heuchel R., and Ohlsson R.. 2003. The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains. Genes Dev. 17:586–590.
  • Pearsall, R. S., Plass C., Romano M. A., Garrick M. D., Shibata H., Hayashizaki Y., and Held W. A.. 1999. A direct repeat sequence at the Rasgrf1 locus and imprinted expression. Genomics 55:194–201.
  • Pearsall, R. S., Shibata H., Brozowska A., Yoshino K., Okuda K., deJong P. J., Plass C., Chapman V. M., Hayashizaki Y., and Held W. A.. 1996. Absence of imprinting in U2AFBPL, a human homologue of the imprinted mouse gene U2afbp-rs. Biochem. Biophys. Res. Commun. 222:171–177.
  • Pfeifer, K., Leighton P. A., and Tilghman S. M.. 1996. The structural H19 gene is required for transgene imprinting. Proc. Natl. Acad. Sci. USA 93:13876–13883.
  • Reed, M. R., Riggs A. D., and Mann J. R.. 2001. Deletion of a direct repeat element has no effect on Igf2 and H19 imprinting. Mamm. Genome 12:873–876.
  • Reinhart, B. J., and Bartel D. P.. 2002. Small RNAs correspond to centromere heterochromatic repeats. Science 297:1831.
  • Schoenherr, C. J., Levorse J. M., and Tilghman S. M.. 2003. CTCF maintains differential methylation at the Igf2/H19 locus. Nat. Genet. 33:66–69.
  • Sunahara, S., Nakamura K., Nakao K., Gondo Y., Nagata Y., and Katsuki M.. 2000. The oocyte-specific methylated region of the U2afbp-rs/U2af1-rs1 gene is dispensable for its imprinted methylation. Biochem. Biophys. Res. Commun. 268:590–595.
  • Szabo, P., Tang S. H., Rentsendorj A., Pfeifer G. P., and Mann J. R.. 2000. Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr. Biol. 10:607–610.
  • Takai, D., Gonzales F. A., Tsai Y. C., Thayer M. J., and Jones P. A.. 2001. Large scale mapping of methylcytosines in CTCF-binding sites in the human H19 promoter and aberrant hypomethylation in human bladder cancer. Hum. Mol. Genet. 10:2619–2626.
  • Thorvaldsen, J. L., Duran K. L., and Bartolomei M. S.. 1998. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12:3693–3702.
  • Thorvaldsen, J. L., Mann M. R. W., Nwoko O., Duran K. L., and Bartolomei M. S.. 2002. Analysis of sequence upstream of the endogenous H19 gene reveals elements both essential and dispensable for imprinting. Mol. Cell. Biol. 22:2450–2462.
  • Tremblay, K. D., Duran K. L., and Bartolomei M. S.. 1997. A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol. Cell. Biol. 17:4322–4329.
  • Tremblay, K. D., Saam J. R., Ingram R. S., Tilghman S. M., and Bartolomei M. S.. 1995. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat. Genet. 9:407–413.
  • Volpe, T. A., Kidner C., Hall I. M., Teng G., Grewal S. I., and Martienssen R. A.. 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837.
  • Yoder, J. A., Walsh C. P., and Bestor T. H.. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13:335–340.
  • Yoon, B. J., Herman H., Sikora A., Smith L. T., Plass C., and Soloway P. D.. 2002. Regulation of DNA methylation of Rasgrf1. Nat. Genet. 30:92–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.