95
Views
154
CrossRef citations to date
0
Altmetric
Gene Expression

Human Box H/ACA Pseudouridylation Guide RNA Machinery

, , &
Pages 5797-5807 | Received 26 Jan 2004, Accepted 01 Apr 2004, Published online: 27 Mar 2023

REFERENCES

  • Agris, P. F. 1996. The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog. Nucleic Acids Res. Mol. Biol. 53:79–129.
  • Amaldi, F., and Pierandrei-Amaldi P.. 1997. TOP genes: a translationally controlled class of genes including those coding for ribosomal proteins. Prog. Mol. Subcell. Biol. 18:1–17.
  • Andrade, L. E., Chan E. K., Raska I., Peebles C. L., Roos G., and Tan E. M.. 1991. Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin. J. Exp. Med. 173:1407–1419.
  • Atzorn, V., Fragapane P., and Kiss T.. 2003. U17/snR30 is a ubiquitous snoRNA with two conserved sequence motifs essential for 18S rRNA production. Mol. Cell. Biol. 24:1769–1778.
  • Bakin, A., and Ofengand J.. 1993. Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry 32:9754–9762.
  • Balakin, A. G., Smith L., and Fournier M. J.. 1996. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86:823–834.
  • Björk, G. R., Ericson J. U., Gustafsson C. E. D., Hagervall T. G., Jönsson Y. H., and Wikstörm P. M.. 1987. Transfer RNA modification. Annu. Rev. Biochem. 56:263–287.
  • Bortolin, M. L., Ganot P., and Kiss T.. 1999. Elements essential for accumulation and function of small nucleolar RNAs directing site-specific pseudouridylation of ribosomal RNAs. EMBO J. 18:457–469.
  • Bortolin, M. L., and Kiss T.. 1998. Human U19 intron-encoded snoRNA is processed from a long primary transcript that possesses little potential for protein coding. RNA 4:445–454.
  • Cavaillé, J., Buiting K., Kiefmann M., Lalande M., Brannan C. I., Horsthemke B., Bachellerie J. P., Brosius J., and Hüttenhofer A.. 2000. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc. Natl. Acad. Sci. USA 97:14311–14316.
  • Cavaillé, J., Nicoloso M., and Bachellerie J. P.. 1996. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383:732–735.
  • Charette, M., and Gray M. W.. 2000. Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49:341–351.
  • Darzacq, X., Jády B. E., Verheggen C., Kiss A. M., Bertrand E., and Kiss T.. 2002. Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J. 21:2746–2756.
  • Decatur, W. A., and Fournier M. J.. 2003. RNA-guided nucleotide modification of ribosomal and other RNAs. J. Biol. Chem. 278:695–698.
  • Decatur, W. A., and Fournier M. J.. 2002. rRNA modifications and ribosome function. Trends Biochem. Sci. 27:344–351.
  • Dragon, F., Pogacic V., and Filipowicz W.. 2000. In vitro assembly of human H/ACA small nucleolar RNPs reveals unique features of U17 and telomerase RNAs. Mol. Cell. Biol. 20:3037–3048.
  • England, T., Bruce A., and Uhlenbeck O.. 1980. Specific labeling of 3′ termini of RNA with T4 RNA ligase. Methods Enzymol. 65:65–74.
  • Filipowicz, W., and Pogacic V.. 2002. Biogenesis of small nucleolar ribonucleoproteins. Curr. Opin. Cell Biol. 14:319–327.
  • Ganot, P., Bortolin M. L., and Kiss T.. 1997. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799–809.
  • Ganot, P., Caizergues-Ferrer M., and Kiss T.. 1997. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11:941–956.
  • Goodall, G. J., Wiebauer K., and Filipowicz W.. 1990. Analysis of pre-mRNA processing in transfected plant protoplasts. Methods Enzymol. 181:148–161.
  • Hughes, D. G., and Maden B. E.. 1978. The pseudouridine contents of the ribosomal ribonucleic acids of three vertebrate species. Numerical correspondence between pseudouridine residues and 2′-O-methyl groups is not always conserved. Biochem. J. 171:781–786.
  • Hüttenhofer, A., Kiefmann M., Meier-Ewert S., O'Brien J., Lehrach H., Bachellerie J. P., and Brosius J.. 2001. RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO J. 20:2943–2953.
  • Jády, B. E., Darzacq X., Tucker K. E., Matera A. G., Bertrand E., and Kiss T.. 2003. Modification of small nuclear RNAs occurs in the nucleoplasmic Cajal bodies following import from the cytoplasm. EMBO J. 22:1878–1888.
  • Jády, B. E., and Kiss T.. 2001. A small nucleolar guide RNA functions both in 2′-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA. EMBO J. 20:541–551.
  • Kiss, A. M., Jády B. E., Darzacq X., Verheggen C., Bertrand E., and Kiss T.. 2002. A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Res. 30:4643–4649.
  • Kiss, T. 2001. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 20:3617–3622.
  • Kiss, T. 2002. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109:145–148.
  • Kiss, T., Bortolin M. L., and Filipowicz W.. 1996. Characterization of the intron-encoded U19 RNA, a new mammalian small nucleolar RNA that is not associated with fibrillarin. Mol. Cell. Biol. 16:1391–1400.
  • Kiss, T., and Filipowicz W.. 1995. Exonucleolytic processing of small nucleolar RNAs from pre-mRNA introns. Genes Dev. 9:1411–1424.
  • Kiss, T., and Filipowicz W.. 1993. Small nucleolar RNAs encoded by introns of the human cell cycle regulatory gene RCC1. EMBO J. 12:2913–2920.
  • Kiss-László, Z., Henry Y., Bachellerie J. P., Caizergues-Ferrer M., and Kiss T.. 1996. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85:1077–1088.
  • Lafontaine, D. L., Bousquet-Antonelli C., Henry Y., Caizergues-Ferrer M., and Tollervey D.. 1998. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 12:527–537.
  • Lange, T. S., Ezrokhi M., Amaldi F., and Gerbi S. A.. 1999. Box H and box ACA are nucleolar localization elements of U17 small nucleolar RNA. Mol. Biol. Cell 10:3877–3890.
  • Maden, B. E. 1990. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog. Nucleic Acids Res. Mol. Biol. 39:241–303.
  • Maden, E. H., and Wakeman J. A.. 1988. Pseudouridine distribution in mammalian 18 S ribosomal RNA. A major cluster in the central region of the molecule. Biochem. J. 249:459–464.
  • Massenet, S., Motorin Y., Lafontaine D. L., Hurt E. C., Grosjean H., and Branlant C.. 1999. Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase Pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA. Mol. Cell. Biol. 19:2142–2154.
  • Massenet, S., Mougin A., and Branlant C.. 1998. Posttrancriptional modification in the U small nuclear RNAs, p. 201–227. In Grosjean H. and Benne R. (ed.), Modification and editing of RNA. ASM Press, Washington, D.C.
  • McCallum, F. S., and Maden B. E.. 1985. Human 18 S ribosomal RNA sequence inferred from DNA sequence. Variations in 18 S sequences and secondary modification patterns between vertebrates. Biochem. J. 232:725–733.
  • McCloskey, J. A., and Crain P. F.. 1998. The RNA modification database—1998. Nucleic Acids Res. 26:196–197.
  • Morrissey, J. P., and Tollervey D.. 1993. Yeast snR30 is a small nucleolar RNA required for 18S rRNA synthesis. Mol. Cell. Biol. 13:2469–2477.
  • Narayanan, A., Lukowiak A., Jády B. E., Dragon F., Kiss T., Terns R. M., and Terns M. P.. 1999. Nucleolar localization signals of box H/ACA small nucleolar RNAs. EMBO J. 18:5120–5130.
  • Ni, J., Tien A. L., and Fournier M. J.. 1997. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89:565–573.
  • Ofengand, J. 2002. Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett. 514:17–25.
  • Ofengand, J., and Bakin A.. 1997. Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J. Mol. Biol. 266:246–268.
  • Pelczar, P., and Filipowicz W.. 1998. The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5′-terminal oligopyrimidine gene family. Mol. Cell. Biol. 18:4509–4518.
  • Richard, P., Darzacq X., Bertrand E., Jády B. E., Verheggen C., and Kiss T.. 2003. A common sequence motif determines the Cajal body-specific localisation of box H/ACA scaRNAs. EMBO J. 22:4283–4293.
  • Ruff, E. A., Rimoldi O. J., Raghu B., and Eliceiri G. L.. 1993. Three small nucleolar RNAs of unique nucleotide sequences. Proc. Natl. Acad. Sci. USA 90:635–638.
  • Samarsky, D. A., and Fournier M. J.. 1999. A comprehensive database for the small nucleolar RNAs from Saccharomyces cerevisiae. Nucleic Acids Res. 27:161–164.
  • Sambrook, J., Fritsch E. F., and Maniatis T.. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Smith, C. M., and Steitz J. A.. 1998. Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol. Cell. Biol. 18:6897–6909.
  • Terns, M. P., and Terns R. M.. 2002. Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr. 10:17–39.
  • Tycowski, K. T., Shu M. D., and Steitz J. A.. 1996. A mammalian gene with introns instead of exons generating stable RNA products. Nature 379:464–466.
  • Vitali, P., Royo H., Seitz H., Bachellerie J. P., Hüttenhofer A., and Cavaillé J.. 2003. Identification of 13 novel human modification guide RNAs. Nucleic Acids Res. 31:6543–6551.
  • Wang, H., Boisvert D., Kim K. K., Kim R., and Kim S. H.. 2000. Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution. EMBO J. 19:317–323.
  • Zebarjadian, Y., King T., Fournier M. J., Clarke L., and Carbon J.. 1999. Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. Mol. Cell. Biol. 19:7461–7472.
  • Zuker, M., Mathews D. H., and Turner D. H.. 1999. Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide, p. 11–43. In Barciszewski J. and Clark B. F. C. (ed.), RNA biochemistry and biotechnology. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.