71
Views
225
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Amplification of Mdmx (or Mdm4) Directly Contributes to Tumor Formation by Inhibiting p53 Tumor Suppressor Activity

, , , , , , , , , , , , & show all
Pages 5835-5843 | Received 02 Oct 2003, Accepted 12 Mar 2004, Published online: 27 Mar 2023

REFERENCES

  • Barlev, N. A., Liu L., Chehab N. H., Mansfield K., Harris K. G., Halazonetis T. D., and Berger S. L.. 2001. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell 8:1243–1254.
  • Bottger, V., A., Bottger C., Garcia-Echeverria, Ramos F. Y., Ramos, van der Eb A. J., Jochemsen A. G., and Lane D. P.. 1999. Comparative study of the p53-mdm2 and p53-MDMX interfaces. Oncogene 18:189–199.
  • Boyd, S. D., Tsai K. Y., and Jacks T.. 2000. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat. Cell Biol. 2:563–568.
  • Brummelkamp, T. R., Bernards R., and Agami R.. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553.
  • Colombo, E., Marine J. C., Danovi D., Falini B., and Pelicci P. G.. 2002. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat. Cell Biol. 4:529–533.
  • De Graaf, P., Little N. A., Ramos Y. F., Meulmeester E., Letteboer S. J., and Jochemsen A. G.. 2003. Hdmx protein stability is regulated by the ubiquitin ligase activity of Mdm2. J. Biol. Chem. 278:38315–38324.
  • el-Deiry, W. S., Tokino T., Velculescu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Kinzler K. W., and Vogelstein B.. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Espinosa, J. M., and Emerson B. M.. 2001. Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol. Cell 8:57–69.
  • Finch, R. A., Donoviel D. B., Potter D., Shi M., Fan A., Freed D. D., Wang C. Y., Zambrowicz B. P., Ramirez-Solis R., Sands A. T., and Zhang N.. 2002. mdmx is a negative regulator of p53 activity in vivo. Cancer Res. 62:3221–3225.
  • Freedman, D. A., Epstein C. B., Roth J. C., and Levine A. J.. 1997. A genetic approach to mapping the p53 binding site in the MDM2 protein. Mol. Med. 3:248–259.
  • Geyer, R. K., Yu Z. K., and Maki C. G.. 2000. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat. Cell Biol. 2:569–573.
  • Grossman, S. R. 2001. p300/CBP/p53 interaction and regulation of the p53 response. Eur. J. Biochem. 268:2773–2778.
  • Gu, J., Kawai H., Nie L., Kitao H., Wiederschain D., Jochemsen A. G., Parant J., Lozano G., and Yuan Z. M.. 2002. Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J. Biol. Chem. 277:19251–19254.
  • Gu, W., and Roeder R. G.. 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606.
  • Harvey, M., Sands A. T., Weiss R. S., Hegi M. E., Wiseman R. W., Pantazis P., Giovanella B. C., Tainsky M. A., Bradley A., and Donehower L. A.. 1993. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8:2457–2467.
  • Hicks, G. G., Egan S. E., Greenberg A. H., and Mowat M.. 1991. Mutant p53 tumor suppressor alleles release ras-induced cell cycle growth arrest. Mol. Cell. Biol. 11:1344–1352.
  • Ito, A., Kawaguchi Y., Lai H. C., Kovacs J. J., Higashimoto Y., Appella E., Yao P. T.. 2002. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 21:6236–6245.
  • Kalkhoven, E., Teunissen H., Houweling A., Verrijzer C. P., and Zantema A.. 2002. The PHD-type zinc finger is an integral part of the CBP acetyltransferase domain. Mol. Cell. Biol. 22:1961–1970.
  • Kamijo, T., Zindy F., Roussel M. F., Quelle D. E., Downing J. R., Ashmun R. A., Grosveld G., and Sherr C. J.. 1997. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91:649–659.
  • Levine, A. J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.
  • Lin, H. J., Eviner V., Prendergast G. C., and White E.. 1995. Activated H-ras rescues E1A-induced apoptosis and cooperates with E1A to overcome p53-dependent growth arrest. Mol. Cell. Biol. 15:4536–4544.
  • Liu, G., Xia T., and Chen X.. 2003. The activation domains, the proline-rich domain, and the C-terminal basic domain in p53 are necessary for acetylation of histones on the proximal p21 promoter and interaction with p300/CREB-binding protein. J. Biol. Chem. 278:17557–17565.
  • Meulmeester, E., Frenk R., Stad R., de Graaf P., Marine J. C., Vousden K. H., and Jochemsen A. G.. 2003. Critical role for a central part of Mdm2 in the ubiquitylation of p53. Mol. Cell. Biol. 23:4929–4938.
  • Migliorini, D., Danovi D., Colombo E., Carbone R., Pelicci P. G., and Marine J. C.. 2002. Hdmx recruitment into the nucleus by Hdm2 is essential for its ability to regulate p53 stability and transactivation. J. Biol. Chem. 277:7318–7323.
  • Migliorini, D., Denchi E. L., Danovi D., Jochemsen A., Capillo M., Gobbi A., Helin K., Pelicci P. G., and Marine J. C.. 2002. Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol. Cell. Biol. 22:5527–5538.
  • Momand, J., Wu H. H., and Dasgupta G.. 2000. MDM2—master regulator of the p53 tumor suppressor protein. Gene 242:15–29.
  • Nakamura, S., Roth J. A., and Mukhopadhyay T.. 2000. Multiple lysine mutations in the C-terminal domain of p53 interfere with MDM2-dependent protein degradation and ubiquitination. Mol. Cell. Biol. 20:9391–9398.
  • Parant, J., Chavez-Reyes A., Little N. A., Yan W., Reinke V., Jochemsen A. G., and Lozano G.. 2001. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat. Genet. 29:92–95.
  • Prives, C., and Manley J. L.. 2001. Why is p53 acetylated? Cell 107:815–818.
  • Quelle, D. E., Zindy F., Ashmun R. A., and Sherr C. J.. 1995. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83:993–1000.
  • Rallapalli, R., Strachan G., Cho B., Mercer W. E., and Hall D. J.. 1999. A novel MDMX transcript expressed in a variety of transformed cell lines encodes a truncated protein with potent p53 repressive activity. J. Biol. Chem. 274:8299–8308.
  • Ramos, Y. F., Stad R., Attema J., Peltenburg L. T., van der Eb A. J., and Jochemsen A. G.. 2001. Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res. 61:1839–1842.
  • Ried, T., Just K. E., Holtgreve-Grez H., du Manoir S., Speicher M. R., Schrock E., Latham C., Blegen H., Zetterberg A., Cremer T., et al. 1995. Comparative genomic hybridization of formalin-fixed, paraffin-embedded breast tumors reveals different patterns of chromosomal gains and losses in fibroadenomas and diploid and aneuploid carcinomas. Cancer Res. 55:5415–5423.
  • Riemenschneider, M. J., Knobbe C. B., and Reifenberger G.. 2003. Refined mapping of 1q32 amplicons in malignant gliomas confirms MDM4 as the main amplification target. Int. J. Cancer 104:752–757.
  • Roth, J., Dobbelstein M., Freedman D. A., Shenk T., and Levine A. J.. 1998. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17:554–564.
  • Sabbatini, P., and McCormick F.. 2002. MDMX inhibits the p300/CBP-mediated acetylation of p53. DNA Cell Biol. 21:519–525.
  • Sage, J., Mulligan G. J., Attardi L. D., Miller A., Chen S., Williams B., Theodorou E., and Jacks T.. 2000. Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev. 14:3037–3050.
  • Sakaguchi, K., Herrera J. E., Saito S., Miki T., Bustin M., Vassilev A., Anderson C. W., and Appella E.. 1998. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12:2831–2841.
  • Sherr, C. J., and DePinho R. A.. 2000. Cellular senescence: mitotic clock or culture shock? Cell 102:407–410.
  • Stad, R., Little N. A., Xirodimas D. P., Frenk R., van der Eb A. J., Lane D. P., Saville M. K., and Jochemsen A. G.. 2001. Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep. 2:1029–1034.
  • Tao, W., and Levine A. J.. 1999. Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc. Natl. Acad. Sci. USA 96:3077–3080.
  • Tirkkonen, M., Tanner M., Karhu R., Kallioniemi A., Isola J., and Kallioniemi O. P.. 1998. Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosomes Cancer 21:177–184.
  • Vousden, K. H., and Lu X.. 2002. Live or let die: the cell's response to p53. Nat. Rev. Cancer 2:594–604.
  • Xiong, Y., Hannon G. J., Zhang H., Casso D., Kobayashi R., and Beach D.. 1993. p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704.
  • Zindy, F., Quelle D. E., Roussel M. F., and Sherr C. J.. 1997. Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15:203–211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.