16
Views
47
CrossRef citations to date
0
Altmetric
Gene Expression

Transcription Regulatory Complexes Bind the Human T-Cell Leukemia Virus 5′ and 3′ Long Terminal Repeats To Control Gene Expression

, , &
Pages 6117-6126 | Received 20 Feb 2004, Accepted 22 Apr 2004, Published online: 27 Mar 2023

REFERENCES

  • Canettieri, G., Morantte I., Guzman E., Asahara H., Herzig S., Anderson S. D., Yates III J. R., and Montminy M.. 2003. Attenuation of a phosphorylation-dependent activator by an HDAC-PP1 complex. Nat. Struct. Biol. 10:175–181.
  • Cullen, B. R., Lomedico P. T., and Ju G.. 1984. Transcriptional interference in avian retroviruses—implications for the promoter insertion model of leukaemogenesis. Nature 307:241–245.
  • Dehee, A., Cesaire R., Desire N., Lezin A., Bourdonne O., Bera O., Plumelle Y., Smadja D., and Nicolas J. C.. 2002. Quantitation of HTLV-1 proviral load by a TaqMan real-time PCR assay. J. Virol. Methods 102:37–51.
  • de Ruijter, A. J., van Gennip A. H., Caron H. N., Kemp S., and van Kuilenburg A. B.. 2003. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370:737–749.
  • Ego, T., Ariumi Y., and Shimotohno K.. 2002. The interaction of HTLV-1 Tax with HDAC1 negatively regulates the viral gene expression. Oncogene 21:7241–7246.
  • Emerman, M., and Temin H. M.. 1984. Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 39:449–467.
  • Frank, S. R., Schroeder M., Fernandez P., Taubert S., and Amati B.. 2001. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev. 15:2069–2082.
  • Georges, S. A., Giebler H. A., Cole P. A., Luger K., Laybourn P. J., and Nyborg J. K.. 2003. Tax recruitment of CBP/p300, via the KIX domain, reveals a potent requirement for acetyltransferase activity that is chromatin dependent and histone tail independent. Mol. Cell. Biol. 23:3392–3404.
  • Georges, S. A., Kraus W. L., Luger K., Nyborg J. K., and Laybourn P. J.. 2002. p300-Mediated Tax transactivation from recombinant chromatin: histone tail deletion mimics coactivator function. Mol. Cell. Biol. 22:127–137.
  • Giebler, H. A., Loring J. E., Van Orden K., Colgin M. A., Garrus J. E., Escudero K. W., Brauweiler A., and Nyborg J. K.. 1997. Anchoring of CREB binding protein to the human T-cell leukemia virus type 1 promoter: a molecular mechanism of Tax transactivation. Mol. Cell. Biol. 17:5156–5164.
  • Grant, C., Barmak K., Alefantis T., Yao J., Jacobson S., and Wigdahl B.. 2002. Human T cell leukemia virus type I and neurologic disease: events in bone marrow, peripheral blood, and central nervous system during normal immune surveillance and neuroinflammation. J. Cell. Physiol. 190:133–159.
  • Guenther, M. G., Lane W. S., Fischle W., Verdin E., Lazar M. A., and Shiekhattar R.. 2000. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev. 14:1048–1057.
  • Guntaka, R. V. 1993. Transcription termination and polyadenylation in retroviruses. Microbiol Rev. 57:511–521.
  • Jeang, K. T., Derse D., Matocha M., and Sharma O.. 1997. Expression status of Tax protein in human T-cell leukemia virus type 1-transformed MT4 cells: recall of MT4 cells distributed by the NIH AIDS Research and Reference Reagent Program. J. Virol. 71:6277–6288.
  • Jepsen, K., and Rosenfeld M. G.. 2002. Biological roles and mechanistic actions of co-repressor complexes. J. Cell Sci. 115:689–698.
  • Juan, L. J., Shia W. J., Chen M. H., Yang W. M., Seto E., Lin Y. S., and Wu C. W.. 2000. Histone deacetylases specifically down-regulate p53-dependent gene activation. J. Biol. Chem. 275:20436–20443.
  • Khorasanizadeh, S. 2004. The nucleosome: from genomic organization to genomic regulation. Cell 116:259–272.
  • Kimzey, A. L., and Dynan W. S.. 1998. Specific regions of contact between human T-cell leukemia virus type I Tax protein and DNA identified by photocross-linking. J. Biol. Chem. 273:13768–13775.
  • Klaver, B., and Berkhout B.. 1994. Comparison of 5′ and 3′ long terminal repeat promoter function in human immunodeficiency virus. J. Virol. 68:3830–3840.
  • Kuo, M. H., and Allis C. D.. 1999. In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19:425–433.
  • Kwok, R. P., Laurance M. E., Lundblad J. R., Goldman P. S., Shih H., Connor L. M., Marriott S. J., and Goodman R. H.. 1996. Control of cAMP-regulated enhancers by the viral transactivator Tax through CREB and the co-activator CBP. Nature 380:642–646.
  • Leclercq, I., Mortreux F., Cavrois M., Leroy A., Gessain A., Wain-Hobson S., and Wattel E.. 2000. Host sequences flanking the human T-cell leukemia virus type 1 provirus in vivo. J. Virol. 74:2305–2312.
  • Lemasson, I., Polakowski N., Laybourn P. J., and Nyborg J. K.. 2002. Transcription factor binding and histone modifications on the integrated proviral promoter in HTLV-I-infected T-cells. J. Biol. Chem. 277:49459–49465.
  • Lemasson, I., Robert-Hebmann V., Hamaia S., Duc Dodon M., Gazzolo L., and Devaux C.. 1997. Transrepression of lck gene expression by human T-cell leukemia virus type 1-encoded p40Tax. J. Virol. 71:1975–1983.
  • Lenzmeier, B. A., Baird E. E., Dervan P. B., and Nyborg J. K.. 1999. The tax protein-DNA interaction is essential for HTLV-I transactivation in vitro. J. Mol. Biol. 291:731–744.
  • Lenzmeier, B. A., Giebler H. A., and Nyborg J. K.. 1998. Human T-cell leukemia virus type 1 Tax requires direct access to DNA for recruitment of CREB binding protein to the viral promoter. Mol. Cell. Biol. 18:721–731.
  • Li, J., Wang J., Nawaz Z., Liu J. M., Qin J., and Wong J.. 2000. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J. 19:4342–4350.
  • Livak, K. J., and Schmittgen T. D.. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔ CT) method. Methods 25:402–408.
  • Lu, H., Pise-Masison C. A., Fletcher T. M., Schiltz R. L., Nagaich A. K., Radonovich M., Hager G., Cole P. A., and Brady J. N.. 2002. Acetylation of nucleosomal histones by p300 facilitates transcription from tax-responsive human T-cell leukemia virus type 1 chromatin template. Mol. Cell. Biol. 22:4450–4462.
  • Lundblad, J. R., Kwok R. P., Laurance M. E., Huang M. S., Richards J. P., Brennan R. G., and Goodman R. H.. 1998. The human T-cell leukemia virus-1 transcriptional activator Tax enhances cAMP-responsive element-binding protein (CREB) binding activity through interactions with the DNA minor groove. J. Biol. Chem. 273:19251–19259.
  • Montagne, J., and Jalinot P.. 1995. Characterization of a transcriptional attenuator within the 5′ R region of the human T cell leukemia virus type 1. AIDS Res. Hum. Retrovir. 11:1123–1129.
  • Mori, N., Gill P. S., Mougdil T., Murakami S., Eto S., and Prager D.. 1996. Interleukin-10 gene expression in adult T-cell leukemia. Blood 88:1035–1045.
  • Nicot, C., Opavsky R., Mahieux R., Johnson J. M., Brady J. N., Wolff L., and Franchini G.. 2000. Tax oncoprotein trans-represses endogenous B-myb promoter activity in human T cells. AIDS Res. Hum. Retrovir. 16:1629–1632.
  • Okada, M., and Jeang K. T.. 2002. Differential requirements for activation of integrated and transiently transfected human T-cell leukemia virus type 1 long terminal repeat. J. Virol. 76:12564–12573.
  • Okumura, K., Sakaguchi G., Takagi S., Naito K., Mimori T., and Igarashi H.. 1996. Sp1 family proteins recognize the U5 repressive element of the long terminal repeat of human T cell leukemia virus type I through binding to the CACCC core motif. J. Biol. Chem. 271:12944–12950.
  • Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:E45.
  • Poiesz, B. J., Ruscetti F. W., Gazdar A. F., Bunn P. A., Minna J. D., and Gallo R. C.. 1980. Detection and isolation of type C retrovirus particle from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc. Natl. Acad. Sci. USA 77:7415–7419.
  • Rayman, J. B., Takahashi Y., Indjeian V. B., Dannenberg J. H., Catchpole S., Watson R. J., te Riele H., and Dynlacht B. D.. 2002. E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev. 16:933–947.
  • Rousset, R., Desbois C., Bantignies F., and Jalinot P.. 1996. Effects on NF-kappa B1/p105 processing of the interaction between the HTLV-1 transactivator Tax and the proteasome. Nature 381:328–331.
  • Seiki, M., Eddy R., Shows T. B., and Yoshida M.. 1984. Nonspecific integration of the HTLV provirus genome into adult T-cell leukaemia cells. Nature 309:640–642.
  • van den Hoff, M. J., Christoffels V. M., Labruyere W. T., Moorman A. F., and Lamers W. H.. 1995. Electrotransfection with “intracellular” buffer. Methods Mol. Biol. 48:185–197.
  • Verdin, E. 1991. DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J. Virol. 65:6790–6799.
  • Wattel, E., Vartanian J. P., Pannetier C., and Wain-Hobson S.. 1995. Clonal expansion of human T-cell leukemia virus type I-infected cells in asymptomatic and symptomatic carriers without malignancy. J. Virol. 69:2863–2868.
  • Wen, Y. D., Perissi V., Staszewski L. M., Yang W. M., Krones A., Glass C. K., Rosenfeld M. G., and Seto E.. 2000. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc. Natl. Acad. Sci. USA 97:7202–7207.
  • Xu, X., Brown D. A., Kitajima I., Bilakovics J., Fey L. W., and Nerenberg M. I.. 1994. Transcriptional suppression of the human T-cell leukemia virus type I long terminal repeat occurs by an unconventional interaction of a CREB factor with the R region. Mol. Cell. Biol. 14:5371–5383.
  • Yoshida, M., Miyoshi I., and Hinuma Y.. 1982. Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc. Natl. Acad. Sci. USA 79:2031–2035.
  • Zhang, Y., Iratni R., Erdjument-Bromage H., Tempst P., and Reinberg D.. 1997. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89:357–364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.