18
Views
42
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

The NEF4 Complex Regulates Rad4 Levels and Utilizes Snf2/Swi2-Related ATPase Activity for Nucleotide Excision Repair

, , , , &
Pages 6362-6378 | Received 23 Mar 2004, Accepted 20 Apr 2004, Published online: 27 Mar 2023

REFERENCES

  • Aboussekhra, A., Biggerstaff M., Shivji M. K., Vilpo J. A., Moncollin V., Podust V. N., Protic M., Hubscher U., Egly J. M., and Wood R. D.. 1995. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80:859–868.
  • Araujo, S. J., and Wood R. D.. 1999. Protein complexes in nucleotide excision repair. Mutat. Res. 435:23–33.
  • Aravind, L., Iyer L. M., and Koonin E. V.. 2003. Scores of RINGS but no PHDs in ubiquitin signaling. Cell Cycle 2:123–126.
  • Auble, D. T., Wang D., Post K. W., and Hahn S.. 1997. Molecular analysis of the SNF2/SWI2 protein family member MOT1, an ATP-driven enzyme that dissociates TATA-binding protein from DNA. Mol. Cell. Biol. 17:4842–4851.
  • Bang, D. D., Verhage R., Goosen N., Brouwer J., and van de Putte P.. 1992. Molecular cloning of RAD16, a gene involved in differential repair in Saccharomyces cerevisiae. Nucleic Acids Res. 20:3925–3931.
  • Batty, D. P., and Wood R. D.. 2000. Damage recognition in nucleotide excision repair of DNA. Gene 241:193–204.
  • Botuyan, M. V., Koth C. M., Mer G., Chakrabartty A., Conaway J. W., Conaway R. C., Edwards A. M., Arrowsmith C. H., and Chazin W. J.. 1999. Binding of elongin A or a von Hippel-Lindau peptide stabilizes the structure of yeast elongin C. Proc. Natl. Acad. Sci. USA 96:9033–9038.
  • Brower, C. S., Sato S., Tomomori-Sato C., Kamura T., Pause A., Stearman R., Klausner R. D., Malik S., Lane W. S., Sorokina I., Roeder R. G., Conaway J. W., and Conaway R. C.. 2002. Mammalian mediator subunit mMED8 is an Elongin BC-interacting protein that can assemble with Cul2 and Rbx1 to reconstitute a ubiquitin ligase. Proc. Natl. Acad. Sci. USA 99:10353–10358.
  • Chen, L., and Madura K.. 2002. Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol. Cell. Biol. 22:4902–4913.
  • Coux, O., Tanaka K., and Goldberg A. L.. 1996. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65:801–847.
  • Deffenbaugh, A. E., Scaglione K. M., Zhang L., Moore J. M., Buranda T., Sklar L. A., and Skowyra D.. 2003. Release of ubiquitin-charged Cdc34-S-Ub from the RING domain is essential for ubiquitination of the SCF(Cdc4)-bound substrate Sic1. Cell 114:611–622.
  • de Laat, W. L., Jaspers N. G., and Hoeijmakers J. H.. 1999. Molecular mechanism of nucleotide excision repair. Genes Dev. 13:768–785.
  • Eisen, J. A., Sweder K. S., and Hanawalt P. C.. 1995. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23:2715–2723.
  • Friedberg, E. C., Bardwell A. J., Bardwell L., Feaver W. J., Kornberg R. D., Svejstrup J. Q., Tomkinson A. E., and Wang Z.. 1995. Nucleotide excision repair in the yeast Saccharomyces cerevisiae: its relationship to specialized mitotic recombination and RNA polymerase II basal transcription. Phil. Trans. R. Soc. London B Biol. Sci. 347:63–68.
  • Gavin, A. C., Bosche M., Krause R., Grandi P., Marzioch M., Bauer A., Schultz J., Rick J. M., Michon A. M., Cruciat C. M., Remor M., Hofert C., Schelder M., Brajenovic M., Ruffner H., Merino A., Klein K., Hudak M., Dickson D., Rudi T., Gnau V., Bauch A., Bastuck S., Huhse B., Leutwein C., Heurtier M. A., Copley R. R., Edelmann A., Querfurth E., Rybin V., Drewes G., Raida M., Bouwmeester T., Bork P., Seraphin B., Kuster B., Neubauer G., and Superti-Furga G.. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147.
  • Goldstein, A. L., and McCusker J. H.. 1999. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553.
  • Green, C. M., and Almouzni G.. 2002. When repair meets chromatin. First in series on chromatin dynamics. EMBO Rep. 3:28–33.
  • Groisman, R., Polanowska J., Kuraoka I., Sawada J., Saijo M., Drapkin R., Kisselev A. F., Tanaka K., and Nakatani Y.. 2003. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113:357–367.
  • Guzder, S. N., Habraken Y., Sung P., Prakash L., and Prakash S.. 1995. Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J. Biol. Chem. 270:12973–12976.
  • Guzder, S. N., Sung P., Prakash L., and Prakash S.. 1998. The DNA-dependent ATPase activity of yeast nucleotide excision repair factor 4 and its role in DNA damage recognition. J. Biol. Chem. 273:6292–6296.
  • Guzder, S. N., Sung P., Prakash L., and Prakash S.. 1997. Yeast Rad7-Rad16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor. J. Biol. Chem. 272:21665–21668.
  • Hanway, D., Chin J. K., Xia G., Oshiro G., Winzeler E. A., and Romesberg F. E.. 2002. Previously uncharacterized genes in the UV- and MMS-induced DNA damage response in yeast. Proc. Natl. Acad. Sci. USA 99:10605–10610.
  • He, Z., Wong J. M., Maniar H. S., Brill S. J., and Ingles C. J.. 1996. Assessing the requirements for nucleotide excision repair proteins of Saccharomyces cerevisiae in an in vitro system. J. Biol. Chem. 271:28243–28249.
  • Hiyama, H., Yokoi M., Masutani C., Sugasawa K., Maekawa T., Tanaka K., Hoeijmakers J. H., and Hanaoka F.. 1999. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J. Biol. Chem. 274:28019–28025.
  • Ho, Y., Gruhler A., Heilbut A., Bader G. D., Moore L., Adams S. L., Millar A., Taylor P., Bennett K., Boutilier K., Yang L., Wolting C., Donaldson I., Schandorff S., Shewnarane J., Vo M., Taggart J., Goudreault M., Muskat B., Alfarano C., Dewar D., Lin Z., Michalickova K., Willems A. R., Sassi H., Nielsen P. A., Rasmussen K. J., Andersen J. R., Johansen L. E., Hansen L. H., Jespersen H., Podtelejnikov A., Nielsen E., Crawford J., Poulsen V., Sorensen B. D., Matthiesen J., Hendrickson R. C., Gleeson F., Pawson T., Moran M. F., Durocher D., Mann M., Hogue C. W., Figeys D., and Tyers M.. 2002. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183.
  • Hochstrasser, M. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30:405–439.
  • Hoege, C., Pfander B., Moldovan G. L., Pyrowolakis G., and Jentsch S.. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141.
  • Hofmann, R. M., and Pickart C. M.. 2001. In vitro assembly and recognition of Lys-63 polyubiquitin chains. J. Biol. Chem. 276:27936–27943.
  • Hofmann, R. M., and Pickart C. M.. 1999. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96:645–653.
  • Huh, W. K., Falvo J. V., Gerke L. C., Carroll A. S., Howson R. W., Weissman J. S., and O'Shea E. K.. 2003. Global analysis of protein localization in budding yeast. Nature 425:686–691.
  • Hyman, L. E., Kwon E., Ghosh S., McGee J., Chachulska A. M., Jackson T., and Baricos W. H.. 2002. Binding to Elongin C inhibits degradation of interacting proteins in yeast. J. Biol. Chem. 277:15586–15591.
  • Jackson, T., Kwon E., Chachulska A. M., and Hyman L. E.. 2000. Novel roles for elongin C in yeast. Biochim. Biophys. Acta 1491:161–176.
  • Jansen, R., Yu H., Greenbaum D., Kluger Y., Krogan N. J., Chung S., Emili A., Snyder M., Greenblatt J. F., and Gerstein M.. 2003. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302:449–453.
  • Joazeiro, C. A., and Weissman A. M.. 2000. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102:549–552.
  • Johnson, E. S., and Blobel G.. 1997. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem. 272:26799–26802.
  • Johnson, R. E., Henderson S. T., Petes T. D., Prakash S., Bankmann M., and Prakash L.. 1992. Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol. Cell. Biol. 12:3807–3818.
  • Kamura, T., Burian D., Yan Q., Schmidt S. L., Lane W. S., Querido E., Branton P. E., Shilatifard A., Conaway R. C., and Conaway J. W.. 2001. Muf1, a novel elongin BC-interacting leucine-rich repeat protein that can assemble with Cul5 and Rbx1 to reconstitute a ubiquitin ligase. J. Biol. Chem. 276:29748–29753.
  • Koth, C. M., Botuyan M. V., Moreland R. J., Jansma D. B., Conaway J. W., Conaway R. C., Chazin W. J., Friesen J. D., Arrowsmith C. H., and Edwards A. M.. 2000. Elongin from Saccharomyces cerevisiae. J. Biol. Chem. 275:11174–11180.
  • Lambertson, D., Chen L., and Madura K.. 2003. Investigating the importance of proteasome-interaction for Rad23 function. Curr Genet. 42:199–208.
  • Li, S., and Smerdon M. J.. 2004. Dissecting transcription coupled and global genomic repair in the chromatin of yeast GAL1-10 genes. J. Biol. Chem. 279:14418–14426.
  • Livingstone-Zatchej, M., Marcionelli R., Moller K., de Pril R., and Thoma F.. 2003. Repair of UV lesions in silenced chromatin provides in vivo evidence for a compact chromatin structure. J. Biol. Chem. 278:37471–37479.
  • Lommel, L., Ortolan T., Chen L., Madura K., and Sweder K. S.. 2002. Proteolysis of a nucleotide excision repair protein by the 26 S proteasome. Curr. Genet. 42:9–20.
  • Longtine, M. S., McKenzie A., 3rd, Demarini D. J., Shah N. G., Wach A., Brachat A., Philippsen P., and Pringle J. R.. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961.
  • Lorick, K. L., Jensen J. P., Fang S., Ong A. M., Hatakeyama S., and Weissman A. M.. 1999. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. USA 96:11364–11369.
  • Mueller, J. P., and Smerdon M. J.. 1995. Repair of plasmid and genomic DNA in a rad7 delta mutant of yeast. Nucleic Acids Res. 23:3457–3464.
  • Ng, J. M., Vermeulen W., van der Horst G. T., Bergink S., Sugasawa K., Vrieling H., and Hoeijmakers J. H.. 2003. A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev. 17:1630–1645.
  • Paetkau, D. W., Riese J. A., MacMorran W. S., Woods R. A., and Gietz R. D.. 1994. Interaction of the yeast RAD7 and SIR3 proteins: implications for DNA repair and chromatin structure. Genes Dev. 8:2035–2045.
  • Perozzi, G., and Prakash S.. 1986. RAD7 gene of Saccharomyces cerevisiae: transcripts, nucleotide sequence analysis, and functional relationship between the RAD7 and RAD23 gene products. Mol. Cell. Biol. 6:1497–1507.
  • Peterson, C. L. 2000. ATP-dependent chromatin remodeling: going mobile. FEBS Lett. 476:68–72.
  • Porkka, K., Saramaki O., Tanner M., and Visakorpi T.. 2002. Amplification and overexpression of elongin C gene discovered in prostate cancer by cDNA microarrays. Lab. Investig. 82:629–637.
  • Prakash, S., and Prakash L.. 2000. Nucleotide excision repair in yeast. Mutat. Res. 451:13–24.
  • Prakash, S., Sung P., and Prakash L.. 1993. DNA repair genes and proteins of Saccharomyces cerevisiae. Annu. Rev. Genet. 27:33–70.
  • Raasi, S., and Pickart C. M.. 2003. Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J. Biol. Chem. 278:8951–8959.
  • Rigaut, G., Shevchenko A., Rutz B., Wilm M., Mann M., and Seraphin B.. 1999. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17:1030–1032.
  • Rodriguez, K., Talamantez J., Huang W., Reed S. H., Wang Z., Chen L., Feaver W. J., Friedberg E. C., and Tomkinson A. E.. 1998. Affinity purification and partial characterization of a yeast multiprotein complex for nucleotide excision repair using histidine-tagged Rad14 protein. J. Biol. Chem. 273:34180–34189.
  • Rouse, J., and Jackson S. P.. 2002. Interfaces between the detection, signaling, and repair of DNA damage. Science 297:547–551.
  • Russell, S. J., Reed S. H., Huang W., Friedberg E. C., and Johnston S. A.. 1999. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol. Cell 3:687–695.
  • Saurin, A. J., Borden K. L., Boddy M. N., and Freemont P. S.. 1996. Does this have a familiar RING? Trends Biochem. Sci. 21:208–214.
  • Schauber, C., Chen L., Tongaonkar P., Vega I., Lambertson D., Potts W., and Madura K.. 1998. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391:715–718.
  • Schild, D., Glassner B. J., Mortimer R. K., Carlson M., and Laurent B. C.. 1992. Identification of RAD16, a yeast excision repair gene homologous to the recombinational repair gene RAD54 and to the SNF2 gene involved in transcriptional activation. Yeast 8:385–395.
  • Schneider, K. R., Smith R. L., and O'Shea E. K.. 1994. Phosphate-regulated inactivation of the kinase PHO80-PHO85 by the CDK inhibitor PHO81. Science 266:122–126.
  • Schneider, R., and Schweiger M.. 1991. The yeast DNA repair proteins RAD1 and RAD7 share similar putative functional domains. FEBS Lett. 283:203–206.
  • Schulman, B. A., Carrano A. C., Jeffrey P. D., Bowen Z., Kinnucan E. R., Finnin M. S., Elledge S. J., Harper J. W., Pagano M., and Pavletich N. P.. 2000. Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408:381–386.
  • Seufert, W., and Jentsch S.. 1991. Yeast ubiquitin-conjugating enzymes involved in selective protein degradation are essential for cell viability. Acta Biol. Hung. 42:27–37.
  • Sikorski, R. S., and Hieter P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Sweder, K., and Madura K.. 2002. Regulation of repair by the 26S proteasome. J. Biomed. Biotechnol. 2:94–105.
  • Terleth, C., Schenk P., Poot R., Brouwer J., and van de Putte P.. 1990. Differential repair of UV damage in rad mutants of Saccharomyces cerevisiae: a possible function of G2 arrest upon UV irradiation. Mol. Cell. Biol. 10:4678–4684.
  • Thoma, F. 1999. Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair. EMBO J. 18:6585–6598.
  • Ulrich, H. D. 2003. Protein-protein interactions within an E2-RING finger complex. Implications for ubiquitin-dependent DNA damage repair. J. Biol. Chem. 278:7051–7058.
  • Ulrich, H. D., and Jentsch S.. 2000. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 19:3388–3397.
  • Ura, K., and Hayes J. J.. 2002. Nucleotide excision repair and chromatin remodeling. Eur. J. Biochem. 269:2288–2293.
  • van Laar, T., van der Eb A. J., and Terleth C.. 2002. A role for Rad23 proteins in 26S proteasome-dependent protein degradation? Mutat. Res. 499:53–61.
  • Verhage, R., Zeeman A. M., de Groot N., Gleig F., Bang D. D., van de Putte P., and Brouwer J.. 1994. The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:6135–6142.
  • Vignali, M., Hassan A. H., Neely K. E., and Workman J. L.. 2000. ATP-dependent chromatin-remodeling complexes. Mol. Cell. Biol. 20:1899–1910.
  • Walker, J. E., Saraste M., Runswick M. J., and Gay N. J.. 1982. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945–951.
  • Wang, Z., Wei S., Reed S. H., Wu X., Svejstrup J. Q., Feaver W. J., Kornberg R. D., and Friedberg E. C.. 1997. The RAD7, RAD16, and RAD23 genes of Saccharomyces cerevisiae: requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products. Mol. Cell. Biol. 17:635–643.
  • Yurchenko, V., Xue Z., and Sadofsky M.. 2003. The RAG1 N-terminal domain is an E3 ubiquitin ligase. Genes Dev. 17:581–585.
  • Zhang, Q., Ekhterae D., and Kim K. H.. 1997. Molecular cloning and characterization of P113, a mouse SNF2/SWI2-related transcription factor. Gene 202:31–37.
  • Zhang, Z., and Buchman A. R.. 1997. Identification of a member of a DNA-dependent ATPase family that causes interference with silencing. Mol. Cell. Biol. 17:5461–5472.
  • Zheng, N., Schulman B. A., Song L., Miller J. J., Jeffrey P. D., Wang P., Chu C., Koepp D. M., Elledge S. J., Pagano M., Conaway R. C., Conaway J. W., Harper J. W., and Pavletich N. P.. 2002. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416:703–709.
  • Zheng, N., Wang P., Jeffrey P. D., and Pavletich N. P.. 2000. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102:533–539.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.