32
Views
100
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Functional Complementation of Human Centromere Protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae

, , , &
Pages 6620-6630 | Received 20 Jan 2004, Accepted 26 Apr 2004, Published online: 27 Mar 2023

REFERENCES

  • Albertson, D. G., and Thomson J. N.. 1982. The kinetochores of Caenorhabditis elegans. Chromosoma 86:409–428.
  • Albertson, D. G., and Thomson J. N.. 1993. Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res. 1:15–26.
  • Amon, A. 1999. The spindle checkpoint. Curr. Opin. Genet. Dev. 9:69–75.
  • Arents, G., Burlingame R. W., Wang B. C., Love W. E., and Moudrianakis E. N.. 1991. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA 88:10148–10152.
  • Biggins, S., and Murray A. W.. 1999. Sister chromatid cohesion in mitosis. Curr. Opin. Genet. Dev. 9:230–236.
  • Brown, K. D., Wood K. W., and Cleveland D. W.. 1996. The kinesin-like protein CENP-E is kinetochore-associated throughout poleward chromosome segregation during anaphase-A. J. Cell Sci. 109:961–969.
  • Buchwitz, B. J., Ahmad K., Moore L. L., Roth M. B., and Henikoff S.. 1999. A histone-H3-like protein in C. elegans. Nature 401:547–548.
  • Cheeseman, I. M., Drubin D. G., and Barnes G.. 2002. Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J. Cell Biol. 157:199–203.
  • Chen, Y., Baker R. E., Keith K. C., Harris K., Stoler S., and Fitzgerald-Hayes M.. 2000. The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol. Cell. Biol. 20:7037–7048.
  • Choi, J. H., Bertram P. G., Drenan R., Carvalho J., Zhou H. H., and Zheng X. F.. 2002. The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase. EMBO Rep. 3:988–994.
  • Choo, K. H. 1997. Centromere DNA dynamics: latent centromeres and neocentromere formation. Am. J. Hum. Genet. 61:1225–1233.
  • Choo, K. H. 2000. Centromerization. Trends Cell Biol. 10:182–188.
  • Choo, K. H. 2001. Domain organization at the centromere and neocentromere. Dev. Cell 1:165–177.
  • Cleveland, D. W., Mao Y., and Sullivan K. F.. 2003. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112:407–421.
  • Cooke, C. A., Bernat R. L., and Earnshaw W. C.. 1990. CENP-B: a major human centromere protein located beneath the kinetochore. J. Cell Biol. 110:1475–1488.
  • Coquelle, F. M., Caspi M., Cordelieres F. P., Dompierre J. P., Dujardin D. L., Koifman C., Martin P., Hoogenraad C. C., Akhmanova A., Galjart N., De Mey J. R., and Reiner O.. 2002. LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol. Cell. Biol. 22:3089–3102.
  • Diamantopoulos, G. S., Perez F., Goodson H. V., Batelier G., Melki R., Kreis T. E., and Rickard J. E.. 1999. Dynamic localization of CLIP-170 to microtubule plus ends is coupled to microtubule assembly. J. Cell Biol. 144:99–112.
  • Dobie, K. W., Hari K. L., Maggert K. A., and Karpen G. H.. 1999. Centromere proteins and chromosome inheritance: a complex affair. Curr. Opin. Genet. Dev. 9:206–217.
  • Dujardin, D., Wacker U. I., Moreau A., Schroer T. A., Rickard J. E., and De Mey J. R.. 1998. Evidence for a role of CLIP-170 in the establishment of metaphase chromosome alignment. J. Cell Biol. 141:849–862.
  • Elbashir, S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., and Tuschl T.. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498.
  • El-Sheraby, A. M., and Hinchliffe J. R.. 1974. Apoptotic cells exhibit membrane phenotypes. J. Embryol. Exp. Morphol. 31:643–654.
  • Figueroa, J., Saffrich R., Ansorge W., and Valdivia M.. 1998. Microinjection of antibodies to centromere protein CENP-A arrests cells in interphase but does not prevent mitosis. Chromosoma 107:397–405.
  • Fritzler, M. J., and Kinsella T. D.. 1980. The CREST syndrome: a distinct serologic entity with anticentromere antibodies. Am. J. Med. 69:520–526.
  • Glowczewski, L., Yang P., Kalashnikova T., Santisteban M. S., and Smith M. M.. 2000. Histone-histone interactions and centromere function. Mol. Cell. Biol. 20:5700–5711.
  • Goshima, G., Kiyomitsu T., Yoda K., and Yanagida M.. 2003. Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J. Cell Biol. 160:25–39.
  • He, X., Rines D. R., Espelin C. W., and Sorger P. K.. 2001. Molecular analysis of kinetochore-microtubule attachment in budding yeast. Cell 106:195–206.
  • Henikoff, S., Ahmad K., and Malik H. S.. 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102.
  • Henikoff, S., Ahmad K., Platero J. S., and van Steensel B.. 2000. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl. Acad. Sci. USA 97:716–721.
  • Howman, E. V., Fowler K. J., Newson A. J., Redward S., MacDonald A. C., Kalitsis P., and Choo K. H.. 2000. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl. Acad. Sci. USA 97:1148–1153.
  • Hyland, K. M., Kingsbury J., Koshland D., and Hieter P.. 1999. Ctf19p: a novel kinetochore protein in Saccharomyces cerevisiae and a potential link between the kinetochore and mitotic spindle. J. Cell Biol. 145:15–28.
  • Jackson, V. 1988. Deposition of newly synthesized histones: hybrid nucleosomes are not tandemly arranged on daughter DNA strands. Biochemistry 27:2109–2121.
  • Janke, C., Ortiz J., Tanaka T. U., Lechner J., and Schiebel E.. 2002. Four new subunits of the Dam1-Duo1 complex reveal novel functions in sister kinetochore biorientation. EMBO J. 21:181–193.
  • Keith, K. C., Baker R. E., Chen Y., Harris K., Stoler S., and Fitzgerald-Hayes M.. 1999. Analysis of primary structural determinants that distinguish the centromere-specific function of histone variant Cse4p from histone H3. Mol. Cell. Biol. 19:6130–6139.
  • Keith, K. C., and Fitzgerald-Hayes M.. 2000. CSE4 genetically interacts with the Saccharomyces cerevisiae centromere DNA elements CDE I and CDE II but not CDE III. Implications for the path of the centromere DNA around a Cse4p variant nucleosome. Genetics 156:973–981.
  • Kiesslich, A., von Mikecz A., and Hemmerich P.. 2002. Cell cycle-dependent association of PML bodies with sites of active transcription in nuclei of mammalian cells. J. Struct. Biol. 140:167–179.
  • Kitagawa, K., and Hieter P.. 2001. Evolutionary conservation between budding yeast and human kinetochores. Nat. Rev. Mol. Cell. Biol. 2:678–687.
  • Kunitoku, N., Sasayama T., Marumoto T., Zhang D., Honda S., Kobayashi O., Hatakeyama K., Ushio Y., Saya H., and Hirota T.. 2003. CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev. Cell 5:853–864.
  • Lechner, J., and Carbon J.. 1991. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64:717–725.
  • Lechner, J., and Ortiz J.. 1996. The Saccharomyces cerevisiae kinetochore. FEBS Lett. 389:70–74.
  • Li, Y., Bachant J., Alcasabas A. A., Wang Y., Qin J., and Elledge S. J.. 2002. The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev. 16:183–197.
  • Lin, H., de Carvalho P., Kho D., Tai C. Y., Pierre P., Fink G. R., and Pellman D.. 2001. Polyploids require Bik1 for kinetochore-microtubule attachment. J. Cell Biol. 155:1173–1184.
  • Liu, S. T., Hittle J. C., Jablonski S. A., Campbell M. S., Yoda K., and Yen T. J.. 2003. Human CENP-I specifies localization of CENP-F, MAD1 and MAD2 to kinetochores and is essential for mitosis. Nat. Cell Biol. 5:341–345.
  • Lo, A. W., Magliano D. J., Sibson M. C., Kalitsis P., Craig J. M., and Choo K. H.. 2001. A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res. 11:448–457.
  • Malik, H. S., and Henikoff S.. 2001. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1293–1298.
  • Maney, T., Ginkel L. M., Hunter A. W., and Wordeman L.. 2000. The kinetochore of higher eucaryotes: a molecular view. Int. Rev. Cytol. 194:67–131.
  • Mann, R. K., and Grunstein M.. 1992. Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo. EMBO J. 11:3297–3306.
  • McEwen, B. F., Ding Y., and Heagle A. B.. 1998. Relevance of kinetochore size and microtubule-binding capacity for stable chromosome attachment during mitosis in PtK1 cells. Chromosome Res. 6:123–132.
  • McEwen, B. F., Hsieh C. E., Mattheyses A. L., and Rieder C. L.. 1998. A new look at kinetochore structure in vertebrate somatic cells using high-pressure freezing and freeze substitution. Chromosoma 107:366–375.
  • Measday, V., Hailey D. W., Pot I., Givan S. A., Hyland K. M., Cagney G., Fields S., Davis T. N., and Hieter P.. 2002. Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore. Genes Dev. 16:101–113.
  • Mellor, J., Jiang W., Funk M., Rathjen J., Barnes C. A., Hinz T., Hegemann J. H., and Philippsen P.. 1990. CPF1, a yeast protein which functions in centromeres and promoters. EMBO J. 9:4017–4026.
  • Meluh, P. B., and Koshland D.. 1997. Budding yeast centromere composition and assembly as revealed by in vivo cross-linking. Genes Dev. 11:3401–3412.
  • Meluh, P. B., and Koshland D.. 1995. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6:793–807.
  • Meluh, P. B., Yang P., Glowczewski L., Koshland D., and Smith M. M.. 1998. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94:607–613.
  • Muro, Y., Masumoto H., Yoda K., Nozaki N., Ohashi M., and Okazaki T.. 1992. Centromere protein B assembles human centromeric alpha-satellite DNA at the 17-bp sequence, CENP-B box. J. Cell Biol. 116:585–596.
  • Nekrasov, V. S., Smith M. A., Peak-Chew S., and Kilmartin J. V.. 2003. Interactions between centromere complexes in Saccharomyces cerevisiae. Mol. Biol. Cell 14:4931–4946.
  • Nishihashi, A., Haraguchi T., Hiraoka Y., Ikemura T., Regnier V., Dodson H., Earnshaw W. C., and Fukagawa T.. 2002. CENP-I is essential for centromere function in vertebrate cells. Dev. Cell 2:463–476.
  • Ortiz, J., Stemmann O., Rank S., and Lechner J.. 1999. A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev. 13:1140–1155.
  • Palmer, D. K., O'Day K., Trong H. L., Charbonneau H., and Margolis R. L.. 1991. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc. Natl. Acad. Sci. USA 88:3734–3738.
  • Palmer, D. K., O'Day K., Wener M. H., Andrews B. S., and Margolis R. L.. 1987. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol. 104:805–815.
  • Perez, F., Diamantopoulos G. S., Stalder R., and Kreis T. E.. 1999. CLIP-170 highlights growing microtubule ends in vivo. Cell 96:517–527.
  • Pidoux, A. L., and Allshire R. C.. 2000. Centromeres: getting a grip of chromosomes. Curr. Opin. Cell Biol. 12:308–319.
  • Pierre, P., Pepperkok R., and Kreis T. E.. 1994. Molecular characterization of two functional domains of CLIP-170 in vivo. J. Cell Sci. 107:1909–1920.
  • Pierre, P., Scheel J., Rickard J. E., and Kreis T. E.. 1992. CLIP-170 links endocytic vesicles to microtubules. Cell 70:887–900.
  • Prasher, D. C., Eckenrode V. K., Ward W. W., Prendergast F. G., and Cormier M. J.. 1992. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233.
  • Remboutsika, E., Lutz Y., Gansmuller A., Vonesch J. L., Losson R., and Chambon P.. 1999. The putative nuclear receptor mediator TIF1alpha is tightly associated with euchromatin. J. Cell Sci. 112:1671–1683.
  • Rickard, J. E., and Kreis T. E.. 1990. Identification of a novel nucleotide-sensitive microtubule-binding protein in HeLa cells. J. Cell Biol. 110:1623–1633.
  • Rieder, C. L., and Salmon E. D.. 1998. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8:310–318.
  • Rose, S. M., and Garrard W. T.. 1984. Differentiation-dependent chromatin alterations precede and accompany transcription of immunoglobulin light chain genes. J. Biol. Chem. 259:8534–8544.
  • Schroer, T. A. 2000. Motors, clutches and brakes for membrane traffic: a commemorative review in honor of Thomas Kreis. Traffic 1:3–10.
  • Schuyler, S. C., and Pellman D.. 2001. Microtubule “plus-end-tracking proteins”: the end is just the beginning. Cell 105:421–424.
  • Shelby, R. D., Monier K., and Sullivan K. F.. 2000. Chromatin assembly at kinetochores is uncoupled from DNA replication. J. Cell Biol. 151:1113–1118.
  • Shelby, R. D., Vafa O., and Sullivan K. F.. 1997. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J. Cell Biol. 136:501–513.
  • Smith, M. M. 2002. Centromeres and variant histones: what, where, when and why? Curr. Opin. Cell Biol. 14:279–285.
  • Smith, M. M. 2002. Histone variants and nucleosome deposition pathways. Mol. Cell 9:1158–1160.
  • Smith, M. M., Yang P., Santisteban M. S., Boone P. W., Goldstein A. T., and Megee P. C.. 1996. A novel histone H4 mutant defective in nuclear division and mitotic chromosome transmission. Mol. Cell. Biol. 16:1017–1026.
  • Spector, D. L., Goldman R. D., and Leinwand L. A.. 1997. Cells, a laboratory manual, vol. 1 to 3. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Stoler, S., Keith K. C., Curnick K. E., and Fitzgerald-Hayes M.. 1995. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9:573–586.
  • Sugata, N., Li S., Earnshaw W. C., Yen T. J., Yoda K., Masumoto H., Munekata E., Warburton P. E., and Todokoro K.. 2000. Human CENP-H multimers colocalize with CENP-A and CENP-C at active centromere-kinetochore complexes. Hum. Mol. Genet. 9:2919–2926.
  • Sugata, N., Munekata E., and Todokoro K.. 1999. Characterization of a novel kinetochore protein, CENP-H. J. Biol. Chem. 274:27343–27346.
  • Sugimoto, K., Fukuda R., and Himeno M.. 2000. Centromere/kinetochore localization of human centromere protein A (CENP-A) exogenously expressed as a fusion to green fluorescent protein. Cell Struct. Funct. 25:253–261.
  • Sullivan, K. F. 2001. A solid foundation: functional specialization of centromeric chromatin. Curr. Opin. Genet. Dev. 11:182–188.
  • Sullivan, K. F., Hechenberger M., and Masri K.. 1994. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127:581–592.
  • Tai, C. Y., Dujardin D. L., Faulkner N. E., and Vallee R. B.. 2002. Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J. Cell Biol. 156:959–968.
  • Takahashi, K., Chen E. S., and Yanagida M.. 2000. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288:2215–2219.
  • Tyler-Smith, C., and Floridia G.. 2000. Many paths to the top of the mountain: diverse evolutionary solutions to centromere structure. Cell 102:5–8.
  • Vafa, O., and Sullivan K. F.. 1997. Chromatin containing CENP-A and alpha-satellite DNA is a major component of the inner kinetochore plate. Curr. Biol. 7:897–900.
  • von Mikecz, A., Zhang S., Montminy M., Tan E. M., and Hemmerich P.. 2000. CREB-binding protein (CBP)/p300 and RNA polymerase II colocalize in transcriptionally active domains in the nucleus. J. Cell Biol. 150:265–273.
  • Warburton, P. E., Cooke C. A., Bourassa S., Vafa O., Sullivan B. A., Stetten G., Gimelli G., Warburton D., Tyler-Smith C., Sullivan K. F., Poirier G. G., and Earnshaw W. C.. 1997. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr. Biol. 7:901–904.
  • Westermann, S., Cheeseman I. M., Anderson S., Yates III J. R., Drubin D. G., and Barnes G.. 2003. Architecture of the budding yeast kinetochore reveals a conserved molecular core. J. Cell Biol. 163:215–222.
  • Wiens, G. R., and Sorger P. K.. 1998. Centromeric chromatin and epigenetic effects in kinetochore assembly. Cell 93:313–316.
  • Wigge, P. A., and Kilmartin J. V.. 2001. The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J. Cell Biol. 152:349–360.
  • Yoda, K., Ando S., Morishita S., Houmura K., Hashimoto K., Takeyasu K., and Okazaki T.. 2000. Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc. Natl. Acad. Sci. USA 97:7266–7271.
  • Yu, H. G., Hiatt E. N., Chan A., Sweeney M., and Dawe R. K.. 1997. Neocentromere-mediated chromosome movement in maize. J. Cell Biol. 139:831–840.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.