47
Views
283
CrossRef citations to date
0
Altmetric
Cell Growth and Development

In Vivo Mitochondrial p53 Translocation Triggers a Rapid First Wave of Cell Death in Response to DNA Damage That Can Precede p53 Target Gene Activation

, , , &
Pages 6728-6741 | Received 30 Oct 2003, Accepted 30 Apr 2004, Published online: 27 Mar 2023

REFERENCES

  • Attardi, L. D., Reczek E. E., Cosmas C., Demicco E. G., McCurrach M. E., Lowe S. W., and Jacks T.. 2000. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev. 14:704–718.
  • Baptiste, N., Friedlander P., Chen X., and Prives C.. 2002. The proline-rich domain of p53 is required for cooperation with anti-neoplastic agents to promote apoptosis of tumor cells. Oncogene 21:9–21.
  • Bennett, M., Macdonald K., Chan S. W., Luzio J. P., Simari R., and Weissberg P.. 1998. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282:290–293.
  • Caelles, C., Helmberg A., and Karin M.. 1994. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370:220–223.
  • Chao, C., Saito S., Kang J., Anderson C. W., Appella E., and Xu Y.. 2000. p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage. EMBO J. 19:4967–4975.
  • Chen, X., Ko L. J., Jayaraman L., and Prives C.. 1996. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10:2438–2451.
  • Chipuk, J. E., Kuwana T., Bouchier-Hayes L., Droin N. M., Newmeyer D. D., Schuler M., and Green D. R.. 2004. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014.
  • Clarke, A. R., Purdie C. A., Harrison D. J., Morris R. G., Bird C. C., Hooper M. L., and Wyllie A. H.. 1993. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362:849–852.
  • Ding, H. F., Lin Y. L., McGill G., Juo P., Zhu H., Blenis J., Yuan J., and Fisher D. E.. 2000. Essential role for caspase-8 in transcription-independent apoptosis triggered by p53. J. Biol. Chem. 275:38905–38911.
  • el-Deiry, W. S., Tokino T., Velculescu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Kinzler K. W., and Vogelstein B.. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Fei, P., Bernhard E. J., and el-Deiry W. S.. 2002. Tissue-specific induction of p53 targets in vivo. Cancer Res. 62:7316–7327.
  • Han, J., Flemington C., Houghton A. B., Gu Z., Zambetti G. P., Lutz R. J., Zhu L., and Chittenden T.. 2001. Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc. Natl. Acad. Sci. USA 98:11318–11323.
  • Haupt, Y., Rowan S., Shaulian E., Vousden K. H., and Oren M.. 1995. Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev. 9:2170–2183.
  • Jeffers, J. R., Parganas E., Lee Y., Yang C., Wang J., Brennan J., MacLean K. H., Han J., Chittenden T., Ihle J. N., McKinnon P. J., Cleveland J. L., and Zambetti G. P.. 2003. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4:321–328.
  • Jimenez, G. S., Nister M., Stommel J. M., Beeche M., Barcarse E. A., Zhang X. Q., O'Gorman S., and Wahl G. M.. 2000. A transactivation-deficient mouse model provides insights into Trp53 regulation and function. Nat. Genet. 26:37–43.
  • Knudson, C. M., Tung K. S., Tourtellotte W. G., Brown G. A., and Korsmeyer S. J.. 1995. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270:96–99.
  • Kokontis, J. M., Wagner A. J., O'Leary M., Liao S., and Hay N.. 2001. A transcriptional activation function of p53 is dispensable for and inhibitory of its apoptotic function. Oncogene 20:659–668.
  • Komarova, E. A., Chernov M. V., Franks R., Wang K., Armin G., Zelnick C. R., Chin D. M., Bacus S. S., Stark G. R., and Gudkov A. V.. 1997. Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J. 16:1391–1400.
  • Lin, Y., Ma W., and Benchimol S.. 2000. Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat. Genet. 26:122–127.
  • Lowe, S. W., Schmitt E. M., Smith S. W., Osborne B. A., and Jacks T.. 1993. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849.
  • MacCallum, D. E., Hall P. A., and Wright E. G.. 2001. The Trp53 pathway is induced in vivo by low doses of gamma radiation. Radiat. Res. 156:324–327.
  • MacCallum, D. E., Hupp T. R., Midgley C. A., Stuart D., Campbell S. J., Harper A., Walsh F. S., Wright E. G., Balmain A., Lane D. P., and Hall P. A.. 1996. The p53 response to ionising radiation in adult and developing murine tissues. Oncogene 13:2575–2587.
  • Marchenko, N. D., Zaika A., and Moll U. M.. 2000. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275:16202–16212.
  • Matas, D., Sigal A., Stambolsky P., Milyavsky M., Weisz L., Schwartz D., Goldfinger N., and Rotter V.. 2001. Integrity of the N-terminal transcription domain of p53 is required for mutant p53 interference with drug-induced apoptosis. EMBO J. 20:4163–4172.
  • Merritt, A. J., Allen T. D., Potten C. S., and Hickman J. A.. 1997. Apoptosis in small intestinal epithelia from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after gamma-irradiation. Oncogene 14:2759–2766.
  • Merritt, A. J., Potten C. S., Kemp C. J., Hickman J. A., Balmain A., Lane D. P., and Hall P. A.. 1994. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res. 54:614–617.
  • Mihara, M., Erster S., Zaika A., Petrenko O., Chittenden T., Pancoska P., and Moll U. M.. 2003. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11:577–590.
  • Mihara, M., and Moll U. M.. 2003. Detection of mitochondrial localization of p53. Methods Mol. Biol. 234:203–209.
  • Miyashita, T., Kitada S., Krajewski S., Horne W. A., Delia D., and Reed J. C.. 1995. Overexpression of the Bcl-2 protein increases the half-life of p21Bax. J. Biol. Chem. 270:26049–26052.
  • Muller, M., Wilder S., Bannasch D., Israeli D., Lehlbach K., Li-Weber M., Friedman S. L., Galle P. R., Stremmel W., Oren M., and Krammer P. H.. 1998. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 188:2033–2045.
  • Nakano, K., and Vousden K. H.. 2001. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7:683–694.
  • Oda, E., Ohki R., Murasawa H., Nemoto J., Shibue T., Yamashita T., Tokino T., Taniguchi T., and Tanaka N.. 2000. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058.
  • Oda, K., Arakawa H., Tanaka T., Matsuda K., Tanikawa C., Mori T., Nishimori H., Tamai K., Tokino T., Nakamura Y., and Taya Y.. 2000. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102:849–862.
  • Okamura, S., Arakawa H., Tanaka T., Nakanishi H., Ng C. C., Taya Y., Monden M., and Nakamura Y.. 2001. p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis. Mol. Cell 8:85–94.
  • Owen-Schaub, L. B., Angelo L. S., Radinsky R., Ware C. F., Gesner T. G., and Bartos D. P.. 1995. Soluble Fas/APO-1 in tumor cells: a potential regulator of apoptosis? Cancer Lett. 94:1–8.
  • Polyak, K., Xia Y., Zweier J. L., Kinzler K. W., and Vogelstein B.. 1997. A model for p53-induced apoptosis. Nature 389:300–305.
  • Qu, L., Huang S., Baltzis D., Rivas-Estilla A. M., Pluquet O., Hatzoglou M., Koumenis C., Taya Y., Yoshimura A., and Koromilas A. E.. 2004. Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3beta. Genes Dev. 18:261–277.
  • Regula, K. M., and Kirshenbaum L. A.. 2001. p53 activates the mitochondrial death pathway and apoptosis of ventricular myocytes independent of de novo gene transcription. J. Mol. Cell. Cardiol. 33:1435–1445.
  • Sansome, C., Zaika A., Marchenko N. D., and Moll U. M.. 2001. Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett. 488:110–115.
  • Sax, J. K., Fei P., Murphy M. E., Bernhard E., Korsmeyer S. J., and el-Deiry W. S.. 2002. BID regulation by p53 contributes to chemosensitivity. Nat. Cell Biol. 4:842–849.
  • Schuler, M., Bossy-Wetzel E., Goldstein J. C., Fitzgerald P., and Green D. R.. 2000. p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J. Biol. Chem. 275:7337–7342.
  • Schuler, M., and Green D. R.. 2001. Mechanisms of p53-dependent apoptosis. Biochem. Soc. Trans. 29:684–688.
  • Shibue, T., Takeda K., Oda E., Tanaka H., Murasawa H., Takaoka A., Morishita Y., Akira S., Taniguchi T., and Tanaka N.. 2003. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev. 17:2233–2238.
  • Sugars, K. L., Budhram-Mahadeo V., Packham G., and Latchman D. S.. 2001. A minimal Bcl-x promoter is activated by Brn-3a and repressed by p53. Nucleic Acids Res. 29:4530–4540.
  • Villunger, A., Michalak E. M., Coultas L., Mullauer F., Bock G., Ausserlechner M. J., Adams J. M., and Strasser A.. 2003. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302:1036–1038. [Online.]
  • Wagner, A. J., Kokontis J. M., and Hay N.. 1994. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev. 8:2817–2830.
  • Yu, J., Zhang L., Hwang P. M., Kinzler K. W., and Vogelstein B.. 2001. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7:673–682.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.