31
Views
42
CrossRef citations to date
0
Altmetric
Gene Expression

SMU-2 and SMU-1, Caenorhabditis elegans Homologs of Mammalian Spliceosome-Associated Proteins RED and fSAP57, Work Together To Affect Splice Site Choice

, &
Pages 6811-6823 | Received 16 Oct 2003, Accepted 20 Apr 2004, Published online: 27 Mar 2023

REFERENCES

  • Assier, E., Bouzinba-Segard H., Stolzenberg M. C., Stephens R., Bardos J., Freemont P., Charron D., Trowsdale J., and Rich T.. 1999. Isolation, sequencing and expression of RED, a novel human gene encoding an acidic-basic dipeptide repeat. Gene 230:145–154.
  • Black, D. L. 2003. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72:291–336.
  • Blencowe, B. J., Issner R., Nickerson J. A., and Sharp P. A.. 1998. A coactivator of pre-mRNA splicing. Genes Dev. 12:996–1009.
  • Brenner, S. 1974. The genetics of Caenorhabditis elegans Genetics 77:71–94.
  • Bubis, J., and Khorana H. G.. 1990. Sites of interaction in the complex between beta- and gamma-subunits of transducin. J. Biol. Chem. 265:12995–12999.
  • Cartegni, L., and Krainer A. R.. 2003. Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat. Struct. Biol. 10:120–125.
  • Chalfie, M., and Au M.. 1989. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243:1027–1033.
  • Chan, R. C., Chan A., Jeon M., Wu T. F., Pasqualone D., Rougvie A. E., and Meyer B. J.. 2003. Chromosome cohesion is regulated by a clock gene paralogue TIM-1. Nature 423:1002–1009.
  • Dalton, S., and Treisman R.. 1992. Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell 68:597–612.
  • Davies, A. G., Spike C. A., Shaw J. E., and Herman R. K.. 1999. Functional overlap between the mec-8 gene and five sym genes in Caenorhabditis elegans. Genetics 153:117–134.
  • Finney, M., and Ruvkun G.. 1990. The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell 63:895–905.
  • Fujita, M., Kawano T., Terashima K., Tanaka Y., and Sakamoto H.. 1998. Expression of spliceosome-associated protein 49 is required for early embryogenesis in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 253:80–84.
  • Graveley, B. R. 2000. Sorting out the complexity of SR protein functions. RNA 6:1197–1211.
  • Hodgkin, J. 1987. A genetic analysis of the sex-determining gene, tra-1, in the nematode Caenorhabditis elegans. Genes Dev. 1:731–745.
  • Hodgkin, J. 1993. Molecular cloning and duplication of the nematode sex-determining gene, tra-1. Genetics 133:543–560.
  • Hresko, M. C., Williams B. D., and Waterston R. H.. 1994. Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans. J. Cell Biol. 124:491–506.
  • Jakubowski, J., and Kornfeld K.. 1999. A local, high-density, single-nucleotide polymorphism map used to clone Caenorhabditis elegans cdf-1. Genetics 153:743–752.
  • Jeon, M., Gardner H. F., Miller E. A., Deshler J., and Rougvie A. E.. 1999. Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science 286:1141–1146.
  • Johnstone, I. L., and Barry J. D.. 1996. Temporal reiteration of a precise gene expression pattern during nematode development. EMBO J. 15:3633–3639.
  • Jumaa, H., Wei G., and Nielsen P. J.. 1999. Blastocyst formation is blocked in mouse embryos lacking the splicing factor SRp20. Curr. Biol. 9:899–902.
  • Kawano, T., Fujita M., and Sakamoto H.. 2000. Unique and redundant functions of SR proteins, a conserved family of splicing factors, in Caenorhabditis elegans development. Mech. Dev. 95:67–76.
  • Krief, P., Augery-Bourget Y., Plaisance S., Merck M. F., Assier E., Tanchou V., Billard M., Boucheix C., Jasmin C., and Azzarone B.. 1994. A new cytokine (IK) down-regulating HLA class II: monoclonal antibodies, cloning and chromosome localization. Oncogene 9:3449–3456.
  • Lallena, M. J., Chalmers K. J., Llamazares S., Lamond A. I., and Valcarcel J.. 2002. Splicing regulation at the second catalytic step by Sex-lethal involves 3′ splice site recognition by SPF45. Cell 109:285–296.
  • Lewis, J. A., and Fleming J. T.. 1995. Basic culture methods, p. 3–29. In Epstein H. F. and Shakes D. C. (ed.), Caenorhabditis elegans: modern biological analysis of an organism. Academic Press, San Diego, Calif.
  • Li, J., Barnard D. C., and Patton J. G.. 2002. A unique glutamic acid-lysine (EK) domain acts as a splicing inhibitor. J. Biol. Chem. 277:39485–39492.
  • Longman, D., Johnstone I. L., and Caceres J. F.. 2000. Functional characterization of SR and SR-related genes in Caenorhabditis elegans. EMBO J. 19:1625–1637.
  • Longman, D., McGarvey T., McCracken S., Johnstone I. L., Blencowe B. J., and Caceres J. F.. 2001. Multiple interactions between SRm160 and SR family proteins in enhancer-dependent splicing and development of C. elegans. Curr. Biol. 11:1923–1933.
  • Lundquist, E. A., and Herman R. K.. 1994. The mec-8 gene of Caenorhabditis elegans affects muscle and sensory neuron function and interacts with three other genes: unc-52, smu-1 and smu-2. Genetics 138:83–101.
  • Lundquist, E. A., Herman R. K., Rogalski T. M., Mullen G. P., Moerman D. G., and Shaw J. E.. 1996. The mec-8 gene of C. elegans encodes a protein with two RNA recognition motifs and regulates alternative splicing of unc-52 transcripts. Development 122:1601–1610.
  • Mackenzie, J. M., Jr., Garcea R. L., Zengel J. M., and Epstein H. F.. 1978. Muscle development in Caenorhabditis elegans: mutants exhibiting retarded sarcomere construction. Cell 15:751–762.
  • Mazroui, R., Puoti A., and Kramer A.. 1999. Splicing factor SF1 from Drosophila and Caenorhabditis: presence of an N-terminal RS domain and requirement for viability. RNA 5:1615–1631.
  • Mello, C., and Fire A.. 1995. DNA transformation, p. 451–482. In Epstein H. F. and Shakes D. C. (ed.), Caenorhabditis elegans: modern biological analysis of an organism. Academic Press, San Diego, Calif.
  • Mello, C. C., Kramer J. M., Stinchcomb D., and Ambros V.. 1991. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10:3959–3970.
  • Mullen, G. P., Rogalski T. M., Bush J. A., Gorji P. R., and Moerman D. G.. 1999. Complex patterns of alternative splicing mediate the spatial and temporal distribution of perlecan/UNC-52 in Caenorhabditis elegans. Mol. Biol. Cell 10:3205–3221.
  • Neubauer, G., King A., Rappsilber J., Calvio C., Watson M., Ajuh P., Sleeman J., Lamond A., and Mann M.. 1998. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat. Genet. 20:46–50.
  • Ring, H. Z., and Lis J. T.. 1994. The SR protein B52/SRp55 is essential for Drosophila development. Mol. Cell. Biol. 14:7499–7506.
  • Rogalski, T. M., Gilchrist E. J., Mullen G. P., and Moerman D. G.. 1995. Mutations in the unc-52 gene responsible for body wall muscle defects in adult Caenorhabditis elegans are located in alternatively spliced exons. Genetics 139:159–169.
  • Rogalski, T. M., Williams B. D., Mullen G. P., and Moerman D. G.. 1993. Products of the unc-52 gene in Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate proteoglycan. Genes Dev. 7:1471–1484.
  • Rose, A. M., and Baillie D. L.. 1979. A mutation in Caenorhabditis elegans that increases recombination frequency more than threefold. Nature 281:599–600.
  • Sambrook, J., Fritsch E. F., and Maniatis T.. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Schmidt, C. J., and Neer E. J.. 1991. In vitro synthesis of G protein beta gamma dimers. J. Biol. Chem. 266:4538–4544.
  • Spike, C. A., Davies A. G., Shaw J. E., and Herman R. K.. 2002. MEC-8 regulates alternative splicing of unc-52 transcripts in C. elegans hypodermal cells. Development 129:4999–5008.
  • Spike, C. A., Shaw J. E., and Herman R. K.. 2001. Analysis of smu-1, a gene that regulates the alternative splicing of unc-52 pre-mRNA in Caenorhabditis elegans. Mol. Cell. Biol. 21:4985–4995.
  • Staknis, D., and Reed R.. 1995. Members of a family of proteins (the RD family) detected by a U1 70K monoclonal antibody are present in spliceosomal complexes. Nucleic Acids Res. 23:4081–4086.
  • Sulston, J., and Hodgkin J.. 1988. Methods, p. 587–606. In Wood W. B. (ed.), The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Tyers, M., Tokiwa G., Nash R., and Futcher B.. 1992. The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J. 11:1773–1784.
  • Wang, J., Xiao S. H., and Manley J. L.. 1998. Genetic analysis of the SR protein ASF/SF2: interchangeability of RS domains and negative control of splicing. Genes Dev. 12:2222–2233.
  • Williams, B. D., Schrank B., Huynh C., Shownkeen R., and Waterston R. H.. 1992. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131:609–624.
  • Williams, B. D., and Waterston R. H.. 1994. Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. J. Cell Biol. 124:475–490.
  • Yochem, J., Gu T., and Han M.. 1998. A new marker for mosaic analysis in Caenorhabditis elegans indicates a fusion between hyp6 and hyp7, two major components of the hypodermis. Genetics 149:1323–1334.
  • Zarkower, D., and Hodgkin J.. 1993. Zinc fingers in sex determination: only one of the two C. elegans Tra-1 proteins binds DNA in vitro. Nucleic Acids Res. 21:3691–3698.
  • Zhou, Z., Licklider L. J., Gygi S. P., and Reed R.. 2002. Comprehensive proteomic analysis of the human spliceosome. Nature 419:182–185.
  • Zorio, D. A., and Blumenthal T.. 1999. U2AF35 is encoded by an essential gene clustered in an operon with RRM/cyclophilin in Caenorhabditis elegans. RNA 5:487–494.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.