6
Views
17
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

DNA Cleavage Activity of the V(D)J Recombination Protein RAG1 Is Autoregulated

, &
Pages 6850-6860 | Received 07 Aug 2003, Accepted 12 May 2004, Published online: 27 Mar 2023

REFERENCES

  • Agrawal, A., Eastman Q. M., and Schatz D. G.. 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394:744–751.
  • Aidinis, V., Dias D. C., Gomez C. A., Bhattacharyya D., Spanopoulou E., and Santagata S.. 2000. Definition of minimal domains of interaction within the recombination-activating genes 1 and 2 recombinase complex. J. Immunol. 164:5826–5832.
  • Akamatsu, Y., and Oettinger M. A.. 1998. Distinct roles of RAG1 and RAG2 in binding the V(D)J recombination signal sequences. Mol. Cell. Biol. 18:4670–4678.
  • Arbuckle, J. L., Fauss L. J., Simpson R., Ptaszek L. M., and Rodgers K. K.. 2001. Identification of two topologically independent domains in RAG1 and their role in macromolecular interactions relevant to V(D)J recombination. J. Biol. Chem. 276:37093–37101.
  • Brandt, V. L., and Roth D. B.. 2002. A recombinase diversified: new functions of the RAG proteins. Curr. Opin. Immunol. 14:224–229.
  • Cuomo, C. A., Mundy C. L., and Oettinger M. A.. 1996. DNA sequence and structure requirements for cleavage of V(D)J recombination signal sequences. Mol. Cell. Biol. 16:5683–5690.
  • Difilippantonio, M. J., McMahan C. J., Eastman Q. M., Spanopoulou E., and Schatz D. G.. 1996. RAG1 mediates signal sequence recognition and recruitment of RAG2 in V(D)J recombination. Cell 87:253–262.
  • Eastman, Q. M., and Schatz D. G.. 1997. Nicking is asynchronous and stimulated by synapsis in 12/23 rule-regulated V(D)J cleavage. Nucleic Acids Res. 25:4370–4378.
  • Eastman, Q. M., Villey I. J., and Schatz D. G.. 1999. Detection of RAG protein-V(D)J recombination signal interactions near the site of DNA cleavage by UV cross-linking. Mol. Cell. Biol. 19:3788–3797.
  • Elkin, S. K., Matthews A. G., and Oettinger M. A.. 2003. The C-terminal portion of RAG2 protects against transposition in vitro. EMBO J. 22:1931–1938.
  • Fugmann, S. D., Lee A. I., Shockett P. E., Villey I. J., and Schatz D. G.. 2000. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18:495–527.
  • Fugmann, S. D., and Schatz D. G.. 2001. Identification of basic residues in RAG2 critical for DNA binding by the RAG1-RAG2 complex. Mol. Cell 8:899–910.
  • Fugmann, S. D., Villey I. J., Ptaszek L. M., and Schatz D. G.. 2000. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Mol. Cell 5:97–107.
  • Gellert, M. 2002. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71:101–132.
  • Godderz, L. J., Rahman N. S., Risinger G. M., Arbuckle J. L., and Rodgers K. K.. 2003. Self-association and conformational properties of RAG1: implications for formation of the V(D)J recombinase. Nucleic Acids Res. 31:2014–2023.
  • Gomez, C. A., Ptaszek L. M., Villa A., Bozzi F., Sobacchi C., Brooks E. G., Notarangelo L. D., Spanopoulou E., Pan Z. Q., Vezzoni P., Cortes P., and Santagata S.. 2000. Mutations in conserved regions of the predicted RAG2 kelch repeats block initiation of V(D)J recombination and result in primary immunodeficiencies. Mol. Cell. Biol. 20:5653–5664.
  • Haren, L., Ton-Hoang B., and Chandler M.. 1999. Integrating DNA: transposases and retroviral integrases. Annu. Rev. Microbiol. 53:245–281.
  • Hiom, K., and Gellert M.. 1997. A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage. Cell 88:65–72.
  • Hiom, K., Melek M., and Gellert M.. 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94:463–470.
  • Huye, L. E., Purugganan M. M., Jiang M. M., and Roth D. B.. 2002. Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest, and joining deficient mutants in the V(D)J recombinase. Mol. Cell. Biol. 22:3460–3473.
  • Jiang, H., Ross A. E., and Desiderio S.. 2004. Cell cycle-dependent accumulation in vivo of transposition-competent complexes between recombination signal ends and full-length RAG proteins. J. Biol. Chem. 279:8478–8486.
  • Kim, D. R. 2003. Recombination activating gene 1 product alone possesses endonucleolytic activity. J. Biochem. Mol. Biol. 36:201–206.
  • Kim, D. R., Dai Y., Mundy C. L., Yang W., and Oettinger M. A.. 1999. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev. 13:3070–3080.
  • Landree, M. A., Wibbenmeyer J. A., and Roth D. B.. 1999. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Genes Dev. 13:3059–3069.
  • Lee, G. S., Neiditch M. B., Sinden R. R., and Roth D. B.. 2002. Targeted transposition by the V(D)J recombinase. Mol. Cell. Biol. 22:2068–2077.
  • Li, W., Chang F. C., and Desiderio S.. 2001. Rag-1 mutations associated with B-cell-negative SCID dissociate the nicking and transesterification steps of V(D)J recombination. Mol. Cell. Biol. 21:3935–3946.
  • Lin, W. C., and Desiderio S.. 1994. Cell cycle regulation of V(D)J recombination-activating protein RAG-2. Proc. Natl. Acad. Sci. USA 91:2733–2737.
  • Ma, Y., Pannicke U., Schwarz K., and Lieber M. R.. 2002. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108:781–794.
  • McBlane, J. F., van Gent D. C., Ramsden D. A., Romeo C., Cuomo C. A., Gellert M., and Oettinger M. A.. 1995. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83:387–395.
  • Messier, T. L., O'Neill J. P., Hou S. M., Nicklas J. A., and Finette B. A.. 2003. In vivo transposition mediated by V(D)J recombinase in human T lymphocytes. EMBO J. 22:1381–1388.
  • Mo, X., Bailin T., and Sadofsky M. J.. 2001. A C-terminal region of RAG1 contacts the coding DNA during V(D)J recombination. Mol. Cell. Biol. 21:2038–2047.
  • Mo, X., Bailin T., and Sadofsky M. J.. 1999. RAG1 and RAG2 cooperate in specific binding to the recombination signal sequence in vitro. J. Biol. Chem. 274:7025–7031.
  • Mundy, C. L., Patenge N., Matthews A. G. W., and Oettinger M. A.. 2002. Assembly of the RAG1/RAG2 synaptic complex. Mol. Cell. Biol. 22:69–77.
  • Nagawa, F., Ishiguro K.-I., Tsuboi A., Yoshida T., Ishikawa A., Takemori T., Otsuka A. J., and Sakano H.. 1998. Footprint analysis of the RAG protein recombination signal sequence complex for V(D)J type recombination. Mol. Cell. Biol. 18:655–663.
  • Peak, M. M., Arbuckle J. L., and Rodgers K. K.. 2003. The central domain of core RAG1 preferentially recognizes single-stranded recombination signal sequence heptamer. J. Biol. Chem. 278:18235–18240.
  • Raghavan, S. C., Swanson P. C., Wu X., Hsieh C. L., and Lieber M. R.. 2004. A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature 428:88–93.
  • Ramsden, D. A., McBlane J. F., van Gent D. C., and Gellert M.. 1996. Distinct DNA sequence and structure requirements for the two steps of V(D)J recombination signal cleavage. EMBO J. 15:3197–3206.
  • Rice, P. A., and Baker T. A.. 2001. Comparative architecture of transposase and integrase complexes. Nat. Struct. Biol. 8:302–307.
  • Rodgers, K. K., Bu Z., Fleming K. G., Schatz D. G., Engelman D. M., and Coleman J. E.. 1996. A zinc-binding domain involved in the dimerization of RAG1. J. Mol. Biol. 260:70–84.
  • Rodgers, K. K., Villey I. J., Ptaszek L., Corbett E., Schatz D. G., and Coleman J. E.. 1999. A dimer of the lymphoid protein RAG1 recognizes the recombination signal sequence and the complex stably incorporates the high mobility group protein HMG2. Nucleic Acids Res. 27:2938–2946.
  • Sadofsky, M. J., Hesse J. E., McBlane J. F., and Gellert M.. 1993. Expression and V(D)J recombination activity of mutated RAG-1 proteins. Nucleic Acids Res. 21:5644–5650.
  • Santagata, S., Aidinis V., and Spanopoulou E.. 1998. The effect of Me2+ cofactors at the initial stages of V(D)J recombination. J. Biol. Chem. 273:16325–16331.
  • Santagata, S., Besmer E., Villa A., Bozzi F., Allingham J. S., Sobacchi C., Haniford D. B., Vezzoni P., Nussenzweig M. C., Pan Z.-Q., and Cortes P.. 1999. The RAG1/RAG2 complex constitutes a 3′ flap endonuclease: implications for junctional diversity in V(D)J and transpositional recombination. Mol. Cell 4:935–947.
  • Shih, I. H., Melek M., Jayaratne N. D., and Gellert M.. 2002. Inverse transposition by the RAG1 and RAG2 proteins: role reversal of donor and target DNA. EMBO J. 21:6625–6633.
  • Spanopoulou, E., Zaitseva F., Wang F.-H., Santagata S., Baltimore D., and Panayotou G.. 1996. The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination. Cell 87:263–276.
  • Swanson, P. C. 2001. The DDE motif in RAG-1 is contributed in trans to a single active site that catalyzes the nicking and transesterification steps of V(D)J recombination. Mol. Cell. Biol. 21:449–458.
  • Swanson, P. C. 2002. A RAG-1/RAG-2 tetramer supports 12/23-regulated synapsis, cleavage, and transposition of V(D)J recombination signals. Mol. Cell. Biol. 22:7790–7801.
  • Swanson, P. C., and Desiderio S.. 1999. RAG-2 promotes heptamer occupancy by RAG-1 in the assembly of a V(D)J initiation complex. Mol. Cell. Biol. 19:3674–3683.
  • Swanson, P. C., Volkmer D., and Wang L.. 2004. Full-length RAG-2, and not full-length RAG-1, specifically suppresses RAG-mediated transposition but not hybrid joint formation or disintegration. J. Biol. Chem. 279:4034–4044.
  • Tsai, C. I., and Schatz D. G.. 2003. Regulation of RAG1/RAG2-mediated transposition by GTP and the C-terminal region of RAG2. EMBO J. 22:1922–1930.
  • Tsai, C. L., Chatterji M., and Schatz D. G.. 2003. DNA mismatches and GC-rich motifs target transposition by the RAG1/RAG2 transposase. Nucleic Acids Res. 31:6180–6190.
  • Yu, K., and Lieber M. R.. 2000. The nicking step in V(D)J recombination is independent of synapsis: implications for the immune repertoire. Mol. Cell. Biol. 20:7914–7921.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.