82
Views
38
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Caenorhabditis elegans Nuclear Receptor Gene nhr-25 Regulates Epidermal Cell Development

, &
Pages 7345-7358 | Received 05 Mar 2004, Accepted 01 Jun 2004, Published online: 27 Mar 2023

REFERENCES

  • Asahina, M., Ishihara T., Jindra M., Kohara Y., Katsura I., and Hirose S.. 2000. The conserved nuclear receptor Ftz-F1 is required for embryogenesis, moulting and reproduction in Caenorhabditis elegans. Genes Cells 5:711–723.
  • Ausubel, F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., and Struhl K.. Current protocols in molecular biology, vol. 3. John Wiley & Sons, Inc., New York, N.Y.
  • Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71–94.
  • Broadus, J., McCabe J. R., Endrizzi B., Thummel C. S., and Woodard C. T.. 1999. The Drosophila beta FTZ-F1 orphan nuclear receptor provides competence for stage-specific responses to the steroid hormone ecdysone. Mol. Cell 3:143–149.
  • Brooks, D. R., Appleford P. J., Murray L., and Isaac R. E.. 2003. An essential role in molting and morphogenesis of Caenorhabditis elegans for ACN-1, a novel member of the angiotensin-converting enzyme family that lacks a metallopeptidase active site. J. Biol. Chem. 278:52340–52346.
  • Brunschwig, K., Wittmann C., Schnabel R., Burglin T. R., Tobler H., and Muller F.. 1999. Anterior organization of the Caenorhabditis elegans embryo by the labial-like Hox gene ceh-13. Development 126:1537–1546.
  • Chalfie, M., Tu Y., Euskirchen G., Ward W. W., and Prasher D. C.. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802–805.
  • Chawla, A., Repa J. J., Evans R. M., and Mangelsdorf D. J.. 2001. Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–1870.
  • Chen, Z., and Han M.. 2001. Role of C. elegans lin-40 MTA in vulval fate specification and morphogenesis. Development 128:4911–4921.
  • Clandinin, T. R., Katz W. S., and Sternberg P. W.. 1997. Caenorhabditis elegans HOM-C genes regulate the response of vulval precursor cells to inductive signal. Dev. Biol. 182:150–161.
  • Clark, S. G., Chisholm A. D., and Horvitz H. R.. 1993. Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39. Cell 74:43–55.
  • Costa, M., Raich W., Agbunag C., Leung B., Hardin J., and Priess J. R.. 1998. A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J. Cell Biol. 141:297–308.
  • Eisenmann, D. M., Maloof J. N., Simske J. S., Kenyon C., and Kim S. K.. 1998. The beta-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during Caenorhabditis elegans vulval development. Development 125:3667–3680.
  • Emmons, S. W., and Sternberg P. W.. 1997. Male development and mating behavior, p. 295–334. In Riddle D. L., Blumental T., Meyer B. J., and Priess J. R. (ed.), C. elegans II. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Escriva, H., Delaunay F., and Laudet V.. 2000. Ligand binding and nuclear receptor evolution. Bioessays 22:717–727.
  • Ferguson, E. L., Sternberg P. W., and Harvitz H. R.. 1987. A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature 326:259–267.
  • Fire, A., Kondo K., and Waterston R.. 1990. Vectors for low copy transformation of C. elegans. Nucleic Acids Res. 18:4269–4270.
  • Fire, A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., and Mello C. C.. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811.
  • Firestein, B. L., and Rongo C.. 2001. DLG-1 is a MAGUK similar to SAP97 and is required for adherens junction formation. Mol. Biol. Cell 12:3465–3475.
  • Francis, G. R., and Waterston R. H.. 1985. Muscle organization in Caenorhabditis elegans: localization of proteins implicated in thin filament attachment and I-band organization. J. Cell Biol. 101:1532–1549.
  • Freyd, G., Kim S. K., and Horvitz H. R.. 1990. Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature 344:876–879.
  • Gissendanner, C. R., and Sluder A. E.. 2000. nhr-25, the Caenorhabditis elegans ortholog of ftz-f1, is required for epidermal and somatic gonad development. Dev. Biol. 221:259–272.
  • Goodwin, B., Jones S. A., Price R. R., Watson M. A., McKee D. D., Moore L. B., Galardi C., Wilson J. G., Lewis M. C., Roth M. E., Maloney P. R., Willson T. M., and Kliewer S. A.. 2000. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell 6:517–526.
  • Greenwald, I. 1997. Development of the vulva, p. 519–541. In Riddle D. L., Blumental T., Meyer B. J., and Priess J. R. (ed.), C. elegans II. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Gu, T., Orita S., and Han M.. 1998. Caenorhabditis elegans SUR-5, a novel but conserved protein, negatively regulates LET-60 Ras activity during vulval induction. Mol. Cell. Biol. 18:4556–4564.
  • Guichet, A., Copeland J. W., Erdelyi M., Hlousek D., Zavorszky P., Ho J., Brown S., Percival-Smith A., Krause H. M., and Ephrussi A.. 1997. The nuclear receptor homologue Ftz-F1 and the homeodomain protein Ftz are mutually dependent cofactors. Nature 385:548–552.
  • Hanna-Rose, W., and Han M.. 1999. COG-2, a sox domain protein necessary for establishing a functional vulval-uterine connection in Caenorhabditis elegans. Development 126:169–179.
  • Hoier, E. F., Mohler W. A., Kim S. K., and Hajnal A.. 2000. The Caenorhabditis elegans APC-related gene apr-1 is required for epithelial cell migration and Hox gene expression. Genes Dev. 14:874–886.
  • Honda, S., Morohashi K., Nomura M., Takeya H., Kitajima M., and Omura T.. 1993. Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J. Biol. Chem. 268:7494–7502.
  • Hwang, B. J., and Sternberg P. W.. 2004. A cell-specific enhancer that specifies lin-3 expression in the C. elegans anchor cell for vulval development. Development 131:143–151.
  • Ikeda, Y., Lala D. S., Luo X., Kim E., Moisan M. P., and Parker K. L.. 1993. Characterization of the mouse FTZ-F1 gene, which encodes a key regulator of steroid hydroxylase gene expression. Mol. Endocrinol. 7:852–860.
  • Ito, M., Yu R. N., and Jameson J. L.. 1998. Steroidogenic factor-1 contains a carboxy-terminal transcriptional activation domain that interacts with steroid receptor coactivator-1. Mol. Endocrinol. 12:290–301.
  • Kamath, R. S., Martinez-Campos M., Zipperlen P., Fraser A. G., and Ahringer J.. 20 December 2000 posting date. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2. [Online.] http://genomebiology.com/2000/2/1/RESEARCH/0002.
  • Kenyon, C. J., Austin J., Costa M., Cowing D. W., Harris J. M., Honigberg L., Hunter C. P., Maloof J. N., Muller-Immergluck M. M., Salser S. J., Waring D. A., Wang B. B., and Wrischnik L. A.. 1997. The dance of the Hox genes: patterning the anteroposterior body axis of Caenorhabditis elegans. Cold Spring Harbor Symp. Quant. Biol. 62:293–305.
  • Koh, K., and Rothman J. H.. 2001. ELT-5 and ELT-6 are required continuously to regulate epidermal seam cell differentiation and cell fusion in C. elegans. Development 128:2867–2880.
  • Koppen, M., Simske J. S., Sims P. A., Firestein B. L., Hall D. H., Radice A. D., Rongo C., and Hardin J. D.. 2001. Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nat. Cell Biol. 3:983–991.
  • Kramer, J. 1997. Extracellular matrix, p. 471–500. In Riddle D. L., Blumental T., Meyer B. J., and Priess J. R. (ed.), C. elegans II. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Lala, D. S., Rice D. A., and Parker K. L.. 1992. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol. Endocrinol. 6:1249–1258.
  • Legouis, R., Gansmuller A., Sookhareea S., Bosher J. M., Baillie D. L., and Labouesse M.. 2000. LET-413 is a basolateral protein required for the assembly of adherens junctions in Caenorhabditis elegans. Nat. Cell Biol. 2:415–422.
  • Lu, T. T., Makishima M., Repa J. J., Schoonjans K., Kerr T. A., Auwerx J., and Mangelsdorf D. J.. 2000. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell 6:507–515.
  • Maduro, M., and Pilgrim D.. 1995. Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 141:977–988.
  • Maloof, J. N., and Kenyon C.. 1998. The Hox gene lin-39 is required during C. elegans vulval induction to select the outcome of Ras signaling. Development 125:181–190.
  • Mangelsdorf, D. J., and Evans R. M.. 1995. The RXR heterodimers and orphan receptors. Cell 83:841–850.
  • Mangelsdorf, D. J., Thummel C., Beato M., Herrlich P., Schutz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P., et al. 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–839.
  • McKenna, N. J., and O'Malley B. W.. 2002. Minireview: nuclear receptor coactivators—an update. Endocrinology 143:2461–2465.
  • Mello, C., and Fire A.. 1995. DNA transformation. Methods Cell Biol. 48:451–482.
  • Michaux, G., Legouis R., and Labouesse M.. 2001. Epithelial biology: lessons from Caenorhabditis elegans. Gene 277:83–100.
  • Miller, D. M., and Shakes D. C.. 1995. Immunofluorescence microscopy. Methods Cell Biol. 48:365–394.
  • Miyabayashi, T., Palfreyman M. T., Sluder A. E., Slack F., and Sengupta P.. 1999. Expression and function of members of a divergent nuclear receptor family in Caenorhabditis elegans. Dev. Biol. 215:314–331.
  • Mohler, W. A., Shemer G., del Campo J. J., Valansi C., Opoku-Serebuoh E., Scranton V., Assaf N., White J. G., and Podbilewicz B.. 2002. The type I membrane protein EFF-1 is essential for developmental cell fusion. Dev. Cell 2:355–362.
  • Mohler, W. A., Simske J. S., Williams-Masson E. M., Hardin J. D., and White J. G.. 1998. Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis. Curr. Biol. 8:1087–1090.
  • Podbilewicz, B., and White J. G.. 1994. Cell fusions in the developing epithelial of C. elegans. Dev. Biol. 161:408–424.
  • Riddle, D. L., Blumental T., Meyer B. J., and Priess J. R.. 1997. C. elegans II. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Sharma-Kishore, R., White J. G., Southgate E., and Podbilewicz B.. 1999. Formation of the vulva in Caenorhabditis elegans: a paradigm for organogenesis. Development 126:691–699.
  • Shemer, G., Kishore R., and Podbilewicz B.. 2000. Ring formation drives invagination of the vulva in Caenorhabditis elegans: Ras, cell fusion, and cell migration determine structural fates. Dev. Biol. 221:233–248.
  • Shemer, G., and Podbilewicz B.. 2000. Fusomorphogenesis: cell fusion in organ formation. Dev. Dyn. 218:30–51.
  • Shemer, G., and Podbilewicz B.. 2002. LIN-39/Hox triggers cell division and represses EFF-1/fusogen-dependent vulval cell fusion. Genes Dev. 16:3136–3141.
  • Singh, R. N., and Sulston J. E.. 1978. Some observations on molting in C. elegans. Nematologica 24:63–71.
  • Sulston, J. E., and Horvitz H. R.. 1977. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56:110–156.
  • Terns, R. M., Kroll-Conner P., Zhu J., Chung S., and Rothman J. H.. 1997. A deficiency screen for zygotic loci required for establishment and patterning of the epidermis in Caenorhabditis elegans. Genetics 146:185–206.
  • Thummel, C. S. 1995. From embryogenesis to metamorphosis: the regulation and function of Drosophila nuclear receptor superfamily members. Cell 83:871–877.
  • Timmons, L., Court D. L., and Fire A.. 2001. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–112.
  • Ueda, H., Sonoda S., Brown J. L., Scott M. P., and Wu C.. 1990. A sequence-specific DNA-binding protein that activates fushi tarazu segmentation gene expression. Genes Dev. 4:624–635.
  • Ueda, H., Sun G. C., Murata T., and Hirose S.. 1992. A novel DNA-binding motif abuts the zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein. Mol. Cell. Biol. 12:5667–5672.
  • Van Auken, K., Weaver D. C., Edgar L. G., and Wood W. B.. 2000. Caenorhabditis elegans embryonic axial patterning requires two recently discovered posterior-group Hox genes. Proc. Natl. Acad. Sci. USA 97:4499–4503.
  • Wang, B. B., Muller-Immergluck M. M., Austin J., Robinson N. T., Chisholm A., and Kenyon C.. 1993. A homeotic gene cluster patterns the anteroposterior body axis of C. elegans. Cell 74:29–42.
  • Williams-Masson, E. M., Malik A. N., and Hardin J.. 1997. An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis. Development 124:2889–2901.
  • Wilson, T. E., Fahrner T. J., and Milbrandt J.. 1993. The orphan receptors NGFI-B and steroidogenic factor 1 establish monomer binding as a third paradigm of nuclear receptor-DNA interaction. Mol. Cell. Biol. 13:5794–5804.
  • Winston, W. M., Molodowitch C., and Hunter C. P.. 2002. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295:2456–2459.
  • Yochem, J., Tuck S., Greenwald I., and Han M.. 1999. A gp330/megalin-related protein is required in the major epidermis of Caenorhabditis elegans for completion of molting. Development 126:597–606.
  • Yu, Y., Li W., Su K., Yussa M., Han W., Perrimon N., and Pick L.. 1997. The nuclear hormone receptor Ftz-F1 is a cofactor for the Drosophila homeodomain protein Ftz. Nature 385:552–555.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.