26
Views
80
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Different Effects of CSA and CSB Deficiency on Sensitivity to Oxidative DNA Damage

, , , , , , , , & show all
Pages 7941-7948 | Received 19 Mar 2004, Accepted 25 Jun 2004, Published online: 27 Mar 2023

REFERENCES

  • Ali, S., Jain S. K., Abdulla M., and Athar M.. 1996. Paraquat induced DNA damage by reactive oxygen species. Biochem. Mol. Biol. Int. 39:63–67.
  • Asami, S., and Kasai H.. 2000. 8-OH-dG: extraction/enzyme treatment/ measurement of 8-OH-dG, p. 224–228. In Taniguchi N. and Gutteridge J. M. (ed.), Experimental protocols for reactive oxygen and nitrogen species. Oxford University Press, Oxford, United Kingdom.
  • Balajee, A. S., May A., Dianov G. L., Friedberg E. C., and Bohr V. A.. 1997. Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells. Proc. Natl. Acad. Sci. USA 94:4306–4311.
  • Bootsma, D., Kraemer K. H., Cleaver J. E., and Hoeijmakers J. H. J.. 2001. Nucleotide excision repair syndromes: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, 8th ed., p. 677–703. McGraw-Hill, New York, N.Y.
  • Bradsher, J., Auriol J., Proietti de Santis L., Iben S., Vonesch J. L., Grummt I., and Egly J. M.. 2002. CSB is a component of RNA pol I transcription. Mol. Cell 10:819–829.
  • Bregeon, D., Doddridge Z. A., You H. J., Weiss B., and Doetsch P. W.. 2003. Transcriptional mutagenesis induced by uracil and 8-oxoguanine in Escherichia coli. Mol. Cell 12:959–970.
  • Bregman, D. B., Halaban R., van Gool A. J., Henning K. A., Friedberg E. C., and Warren S. L.. 1996. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl. Acad. Sci. USA 93:11586–11590.
  • Citterio, E., Van Den Boom V., Schnitzler G., Kanaar R., Bonte E., Kingston R. E., Hoeijmakers J. H., and Vermeulen W.. 2000. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell. Biol. 20:7643–7653.
  • Cooper, P. K., Nouspikel T., Clarkson S. G., and Leadon S. A.. 1997. Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science 275:990–993.
  • Cozzarelli, N. R. 2003. Editorial expression of concern. Proc. Natl. Acad. Sci. USA 100:11816.
  • de Laat, W. L., Jaspers N. G., and Hoeijmakers J. H.. 1999. Molecular mechanism of nucleotide excision repair. Genes Dev. 13:768–785.
  • de Waard, H., de Wit J., Gorgels T. G., van den Aardweg G., Andressoo J. O., Vermeij M., van Steeg H., Hoeijmakers J. H., and van der Horst G. T.. 2003. Cell type-specific hypersensitivity to oxidative damage in CSB and XPA mice. DNA Repair 2:13–25.
  • Dianov, G., Bischoff C., Sunesen M., and Bohr V. A.. 1999. Repair of 8-oxoguanine in DNA is deficient in Cockayne syndrome group B cells. Nucleic Acids Res. 27:1365–1368.
  • Dianov, G. L., Houle J. F., Iyer N., Bohr V. A., and Friedberg E. C.. 1997. Reduced RNA polymerase II transcription in extracts of Cockayne syndrome and xeroderma pigmentosum/Cockayne syndrome cells. Nucleic Acids Res. 25:3636–3642.
  • Dlugosz, A. A., Glick A. B., Tennenbaum T., Weinberg W. C., and Yuspa S. H.. 1995. Isolation and utilization of epidermal keratinocytes for oncogene research. Methods Enzymol. 254:3–20.
  • Gowen, L. C., Avrutskaya A. V., Latour A. M., Koller B. H., and Leadon S. A.. 1998. BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science 281:1009–1112. (Retraction, 300:1657, 2003.)
  • Groisman, R., Polanowska J., Kuraoka I., Sawada J., Saijo M., Drapkin R., Kisselev A. F., Tanaka K., and Nakatani Y.. 2003. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113:357–367.
  • Henning, K. A., Li L., Iyer N., McDaniel L. D., Reagan M. S., Legerski R., Schultz R. A., Stefanini M., Lehmann A. R., Mayne L. V., et al. 1995. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82:555–564.
  • Hennings, H., Holbrook K., Steinert P., and Yuspa S.. 1980. Growth and differentiation of mouse epidermal cells in culture: effects of extracellular calcium. Curr. Probl. Dermatol. 10:3–25.
  • Hoeijmakers, J. H. 2001. Genome maintenance mechanisms for preventing cancer. Nature 411:366–374.
  • Hwang, B. J., Ford J. M., Hanawalt P. C., and Chu G.. 1999. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc. Natl. Acad. Sci. USA 96:424–428.
  • Inukai, N., Yamaguchi Y., Kuraoka I., Yamada T., Kamijo S., Kato J., Tanaka K., and Handa H.. 2004. A novel hydrogen peroxide-induced phosphorylation and ubiquitination pathway leading to RNA polymerase II proteolysis. J. Biol. Chem. 279:8190–8195.
  • Iyer, N., Reagan M. S., Wu K. J., Canagarajah B., and Friedberg E. C.. 1996. Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein. Biochemistry 35:2157–2167.
  • Kamiuchi, S., Saijo M., Citterio E., de Jager M., Hoeijmakers J. H., and Tanaka K.. 2002. Translocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair. Proc. Natl. Acad. Sci. USA 99:201–206.
  • Kuraoka, I., Endou M., Yamaguchi Y., Wada T., Handa H., and Tanaka K.. 2003. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis. J. Biol. Chem. 278:7294–7299.
  • Leadon, S. A. 2003. Retraction. DNA Repair 2:361.
  • Leadon, S. A., and Avrutskaya A. V.. 1998. Requirement for DNA mismatch repair proteins in the transcription-coupled repair of thymine glycols in Saccharomyces cerevisiae. Mutat. Res. 407:177–187. (See also reference 26.)
  • Leadon, S. A., and Cooper P. K.. 1993. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome. Proc. Natl. Acad. Sci. USA 90:10499–10503. (See also reference 10.)
  • Lee, K. B., Wang D., Lippard S. J., and Sharp P. A.. 2002. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc. Natl. Acad. Sci. USA 99:4239–4244.
  • Lee, S. K., Yu S. L., Prakash L., and Prakash S.. 2002. Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases. Mol. Cell. Biol. 22:4383–4389.
  • Le Page, F., Kwoh E. E., Avrutskaya A., Gentil A., Leadon S. A., Sarasin A., and Cooper P. K.. 2000. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101:159–171.
  • Lindahl, T., and Wood R. D.. 1999. Quality control by DNA repair. Science 286:1897–1905.
  • Luo, Z., Zheng J., Lu Y., and Bregman D. B.. 2001. Ultraviolet radiation alters the phosphorylation of RNA polymerase II large subunit and accelerates its proteasome-dependent degradation. Mutat. Res. 486:259–274.
  • Mayne, L. V., and Lehmann A. R.. 1982. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Res. 42:1473–1478.
  • McKay, B. C., Chen F., Clarke S. T., Wiggin H. E., Harley L. M., and Ljungman M.. 2001. UV light-induced degradation of RNA polymerase II is dependent on the Cockayne's syndrome A and B proteins but not p53 or MLH1. Mutat. Res. 485:93–105.
  • Murai, M., Enokido Y., Inamura N., Yoshino M., Nakatsu Y., van der Horst G. T., Hoeijmakers J. H., Tanaka K., and Hatanaka H.. 2001. Early postnatal ataxia and abnormal cerebellar development in mice lacking Xeroderma pigmentosum group A and Cockayne syndrome Group B DNA repair genes. Proc. Natl. Acad. Sci. USA 98:13379–13384.
  • Nakae, D., Mizumoto Y., Kobayashi E., Noguchi O., and Konishi Y.. 1995. Improved genomic/nuclear DNA extraction for 8-hydroxydeoxyguanosine analysis of small amounts of rat liver tissue. Cancer Lett. 97:233–239.
  • Nance, M. A., and Berry S. A.. 1992. Cockayne syndrome: review of 140 cases. Am. J. Med. Genet. 42:68–84.
  • Osterod, M., Larsen E., Le Page F., Hengstler J. G., Van Der Horst G. T., Boiteux S., Klungland A., and Epe B.. 2002. A global DNA repair mechanism involving the Cockayne syndrome B (CSB) gene product can prevent the in vivo accumulation of endogenous oxidative DNA base damage. Oncogene 21:8232–8239.
  • Rapin, I., Lindenbaum Y., Dickson D. W., Kraemer K. H., and Robbins J. H.. 2000. Cockayne syndrome and xeroderma pigmentosum. Neurology 55:1442–1449.
  • Ratner, J. N., Balasubramanian B., Corden J., Warren S. L., and Bregman D. B.. 1998. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem. 273:5184–5189.
  • Riis, B., Risom L., Loft S., and Poulsen H. E.. 2002. Increased rOGG1 expression in regenerating rat liver tissue without a corresponding increase in incision activity. DNA Repair 1:419–424.
  • Selby, C. P., and Sancar A.. 1997. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl. Acad. Sci. USA 94:11205–11209.
  • Sijbers, A. M., de Laat W. L., Ariza R. R., Biggerstaff M., Wei Y. F., Moggs J. G., Carter K. C., Shell B. K., Evans E., de Jong M. C., Rademakers S., de Rooij J., Jaspers N. G., Hoeijmakers J. H., and Wood R. D.. 1996. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86:811–822.
  • Stefanini, M., Fawcett H., Botta E., Nardo T., and Lehmann A. R.. 1996. Genetic analysis of twenty-two patients with Cockayne syndrome. Hum. Genet. 97:418–423.
  • Stevnsner, T., Nyaga S., de Souza-Pinto N. C., van der Horst G. T., Gorgels T. G., Hogue B. A., Thorslund T., and Bohr V. A.. 2002. Mitochondrial repair of 8-oxoguanine is deficient in Cockayne syndrome group B. Oncogene 21:8675–8682.
  • Sunesen, M., Stevnsner T., Brosh R. M., Jr., Dianov G. L., and Bohr V. A.. 2002. Global genome repair of 8-oxoG in hamster cells requires a functional CSB gene product. Oncogene 21:3571–3578.
  • Svejstrup, J. Q. 2002. Mechanisms of transcription-coupled DNA repair. Nat. Rev. Mol. Cell Biol. 3:21–29.
  • Svejstrup, J. Q. 2003. Rescue of arrested RNA polymerase II complexes. J. Cell Sci. 116:447–451.
  • Tang, J. Y., Hwang B. J., Ford J. M., Hanawalt P. C., and Chu G.. 2000. Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol. Cell 5:737–744.
  • Tantin, D., Kansal A., and Carey M.. 1997. Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol. Cell. Biol. 17:6803–6814.
  • Tornaletti, S., Maeda L. S., Lloyd D. R., Reines D., and Hanawalt P. C.. 2001. Effect of thymine glycol on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. J. Biol. Chem. 276:45367–45371.
  • Tuo, J., Muftuoglu M., Chen C., Jaruga P., Selzer R. R., Brosh R. M., Jr., Rodriguez H., Dizdaroglu M., and Bohr V. A.. 2001. The Cockayne syndrome group B gene product is involved in general genome base excision repair of 8-hydroxyguanine in DNA. J. Biol. Chem. 276:45772–45779.
  • van der Horst, G. T., Meira L., Gorgels T. G., de Wit J., Velasco-Miguel S., Richardson J. A., Kamp Y., Vreeswijk M. P., Smit B., Bootsma D., Hoeijmakers J. H., and Friedberg E. C.. 2002. UVB radiation-induced cancer predisposition in Cockayne syndrome group A (Csa) mutant mice. DNA Repair 1:143–157.
  • van der Horst, G. T., van Steeg H., Berg R. J., van Gool A. J., de Wit J., Weeda G., Morreau H., Beems R. B., van Kreijl C. F., de Gruijl F. R., Bootsma D., and Hoeijmakers J. H.. 1997. Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition. Cell 89:425–435.
  • van Gool, A. J., Citterio E., Rademakers S., van Os R., Vermeulen W., Constantinou A., Egly J. M., Bootsma D., and Hoeijmakers J. H.. 1997. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J. 16:5955–5965.
  • van Hoffen, A., Natarajan A. T., Mayne L. V., van Zeeland A. A., Mullenders L. H., and Venema J.. 1993. Deficient repair of the transcribed strand of active genes in Cockayne's syndrome cells. Nucleic Acids Res. 21:5890–5895.
  • Venema, J., van Hoffen A., Karcagi V., Natarajan A. T., van Zeeland A. A., and Mullenders L. H.. 1991. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Mol. Cell. Biol. 11:4128–4134.
  • Venema, J., van Hoffen A., Natarajan A. T., van Zeeland A. A., and Mullenders L. H.. 1990. The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA. Nucleic Acids Res. 18:443–448.
  • Viswanathan, A., and Doetsch P. W.. 1998. Effects of nonbulky DNA base damages on Escherichia coli RNA polymerase-mediated elongation and promoter clearance. J. Biol. Chem. 273:21276–21281.
  • Ward, J. M., Peters J. M., Perella C. M., and Gonzalez F. J.. 1998. Receptor and nonreceptor-mediated organ-specific toxicity of di(2-ethylhexyl)phthalate (DEHP) in peroxisome proliferator-activated receptor alpha-null mice. Toxicol. Pathol. 26:240–246.
  • Yu, A., Fan H. Y., Liao D., Bailey A. D., and Weiner A. M.. 2000. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol. Cell 5:801–810.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.