57
Views
66
CrossRef citations to date
0
Altmetric
Gene Expression

Phosphorylation and Alternative Pre-mRNA Splicing Converge To Regulate Myocyte Enhancer Factor 2C Activity

&
Pages 8264-8275 | Received 15 Feb 2004, Accepted 11 Jun 2004, Published online: 27 Mar 2023

REFERENCES

  • Ausubel, F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., and Struhl K.. 1998. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y.
  • Bader, D., Masaki T., and Fischman D. A.. 1982. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell Biol. 95:763–770.
  • Bergstrom, D. A., Penn B. H., Strand A., Perry R. L., Rudnicki M. A., and Tapscott S. J.. 2002. Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol. Cell 9:587–600.
  • Black, B. L., Lu J., and Olson E. N.. 1997. The MEF2A 3′ untranslated region functions as a cis-acting translational repressor. Mol. Cell. Biol. 17:2756–2763.
  • Black, B. L., and Olson E. N.. 1998. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 14:167–196.
  • Black, D. L. 2003. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72:291–336.
  • Breitbart, R. E., Liang C. S., Smoot L. B., Laheru D. A., Mahdavi V., and Nadal-Ginard B.. 1993. A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage. Development 118:1095–1106.
  • Davies, S. P., Reddy H., Caivano M., and Cohen P.. 2000. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351:95–105.
  • De Angelis, L., Borghi S., Melchionna R., Berghella L., Baccarani-Contri M., Parise F., Ferrari S., and Cossu G.. 1998. Inhibition of myogenesis by transforming growth factor beta is density-dependent and related to the translocation of transcription factor MEF2 to the cytoplasm. Proc. Natl. Acad. Sci. USA 95:12358–12363.
  • Dhavan, R., and Tsai L.-H.. 2001. A decade of cdk5. Nat. Rev. Mol. Cell Biol. 2:7879–7891.
  • Dodou, E., Sparrow D. B., Mohun T., and Treisman R.. 1995. MEF2 proteins, including MEF2A, are expressed in both muscle and non-muscle cells. Nucleic Acids Res. 23:4267–4274.
  • Edmondson, D. G., Lyons G. E., Martin J. F., and Olson E. N.. 1994. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 120:1251–1263.
  • Gong, X., Tang X., Wiedmann M., Wang X., Peng J., Zheng D., Blair L. A. C., Marshall J., and Mao Z.. 2003. Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38:33–46.
  • Gunthorpe, D., Beatty K. E., and Taylor M. V.. 1999. Different levels, but not different isoforms, of the Drosophila transcription factor DMEF2 affect distinct aspects of muscle differentiation. Dev. Biol. 215:130–145.
  • Han, J., Jiang Y., Li Z., Kravchenko V. V., and Ulevitch R. J.. 1997. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386:296–299.
  • Han, T. H., and Prywes R.. 1995. Regulatory role of MEF2D in serum induction of the c-jun promoter. Mol. Cell. Biol. 15:2907–2915.
  • Janson, C. G., Chen Y., Li Y., and Leifer D.. 2001. Functional regulatory regions of human transcription factor MEF2C. Mol. Brain Res. 97:70–82.
  • Kato, Y., Zhao M., Morikawa A., Sugiyama T., Chakravortty D., Koide N., Yoshida T., Tapping R. I., Yang Y., Yokochi T., and Lee J. D.. 2000. Big mitogen-activated kinase regulates multiple members of the MEF2 protein family. J. Biol. Chem. 275:18534–18540.
  • Lazaro, J. B., Bailey P. J., and Lassar A. B.. 2002. Cyclin D-cdk4 activity modulates the subnuclear localization and interaction of MEF2 with SRC-family coactivators during skeletal muscle differentiation. Genes Dev. 16:1792–1805.
  • Lazaro, J. B., Kitzmann M., Poul M. A., Vandromme M., Lamb N. J. C., and Fernandez A.. 1997. Cyclin dependent kinase 5, cdk5, a positive regulator of myogenesis in mouse C2 cells. J. Cell Sci. 110:1251–1260.
  • Lee, Y., Nadal-Ginard B., Mahdavi V., and Izumo S.. 1997. Myocyte-specific enhancer factor 2 and thyroid hormone receptor associate and synergistically activate the alpha-cardiac myosin heavy-chain gene. Mol. Cell. Biol. 17:2745–2755.
  • Lin, J., Wu H., Tarr P. T., Zhang C. Y., Wu Z., Boss O., Michael L. F., Puigserver P., Isotani E., Olson E. N., Lowell B. B., Bassel-Duby R., and Spiegelman B. M.. 2002. Transcriptional co-activator PGC-1alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801.
  • Lin, Q., Lu J., Yanagisawa H., Webb R., Lyons G. E., Richardson J. A., and Olson E. N.. 1998. Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125:4565–4574.
  • Lin, Q., Schwarz J., Bucana C., and Olson E. N.. 1997. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407.
  • Liu, S., Liu P., Borras A., Chatila T., and Speck S. H.. 1997. Cyclosporin A-sensitive induction of the Epstein-Barr virus lytic switch is mediated via a novel pathway involving a MEF2 family member. EMBO J. 16:143–153.
  • Mao, Z., Bonni A., Xia F., Nadal-Vicens M., and Greenberg M. E.. 1999. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286:785–790.
  • Martin, J. F., Miano J. M., Hustad C. M., Copeland N. G., Jenkins N. A., and Olson E. N.. 1994. A Mef2 gene that generates a muscle-specific isoform via alternative mRNA splicing. Mol. Cell. Biol. 14:1647–1656.
  • Martin, J. F., Schwarz J. J., and Olson E. N.. 1993. Myocyte enhancer factor (MEF) 2C: a tissue-restricted member of the MEF-2 family of transcription factors. Proc. Natl. Acad. Sci. USA 90:5282–5286.
  • McDermott, J. C., Cardoso M. C., Yu Y. T., Andres V., Leifer D., Krainc D., Lipton S. A., and Nadal-Ginard B.. 1993. hMEF2C gene encodes skeletal muscle- and brain-specific transcription factors. Mol. Cell. Biol. 13:2564–2577.
  • McKinsey, T. A., Zhang C. L., Lu J., and Olson E. N.. 2000. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408:106–111.
  • McKinsey, T. A., Zhang C. L., and Olson E. N.. 2001. Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 11:497–504.
  • McKinsey, T. A., Zhang C. L., and Olson E. N.. 2002. MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem. Sci. 27:40–47.
  • Miska, E. A., Karlsson C., Langley E., Nielsen S. J., Pines J., and Kouzarides T.. 1999. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 18:5099–5107.
  • Molkentin, J. D., Black B. L., Martin J. F., and Olson E. N.. 1995. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83:1125–1136.
  • Molkentin, J. D., Black B. L., Martin J. F., and Olson E. N.. 1996. Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C. Mol. Cell. Biol. 16:2627–2636.
  • Mora, S., and Pessin J. E.. 2000. The MEF2A isoform is required for striated muscle-specific expression of the insulin-responsive GLUT4 glucose transporter. J. Biol. Chem. 275:16323–16328.
  • Naya, F. J., Black B. L., Wu H., Bassel-Duby R., Richardson J. A., Hill J. A., and Olson E. N.. 2002. Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat. Med. 8:1303–1309.
  • Naya, F. S., and Olson E.. 1999. MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr. Opin. Cell Biol. 11:683–688.
  • Okamoto, S., Krainc D., Sherman K., and Lipton S. A.. 2000. Antiapoptotic role of the p38 mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation. Proc. Natl. Acad. Sci. USA 97:7561–7566.
  • Okamoto, S., Li Z., Ju C., Scholzke M. N., Mathews E., Cui J., Salvesen G. S., Bossy-Wetzel E., and Lipton S. A.. 2002. Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis. Proc. Natl. Acad. Sci. USA 99:3974–3979.
  • Ornatsky, O. I., and McDermott J. C.. 1996. MEF2 protein expression, DNA binding specificity and complex composition, and transcriptional activity in muscle and non-muscle cells. J. Biol. Chem. 271:24927–24933.
  • Pollock, R., and Treisman R.. 1991. Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 5:2327–2341.
  • Raingeaud, J., Whitmarsh A. J., Barrett T., Derijard B., and Davis R. J.. 1996. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell. Biol. 16:1247–1255.
  • Ridgeway, A. G., Wilton S., and Skerjanc I. S.. 2000. Myocyte enhancer factor 2C and myogenin up-regulate each other's expression and induce the development of skeletal muscle in P19 cells. J. Biol. Chem. 275:41–46.
  • Sartorelli, V., Huang J., Hamamori Y., and Kedes L.. 1997. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17:1010–1026.
  • Suzuki, E., Lowry J., Sonoda G., Testa J. R., and Walsh K.. 1996. Structures and chromosome locations of the human MEF2A gene and a pseudogene MEF2AP. Cytogenet. Cell Genet. 73:244–249.
  • Wang, D. Z., Valdez M. R., McAnally J., Richardson J., and Olson E. N.. 2001. The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development. Development 128:4623–4633.
  • Wu, H., Naya F. J., McKinsey T. A., Mercer B., Shelton J. M., Chin E. R., Simard A. R., Michel R. N., Bassel-Duby R., Olson E. N., and Williams R. S.. 2000. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 19:1963–1973.
  • Yang, S. H., Galanis A., and Sharrocks A. D.. 1999. Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol. Cell. Biol. 19:4028–4038.
  • Youn, H. D., Chatila T. A., and Liu J. O.. 2000. Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. EMBO J. 19:4323–4331.
  • Yu, G. S., Lu Y. C., and Gulick T.. 1998. Co-regulation of tissue-specific alternative human carnitine palmitoyltransferase IB gene promoters by fatty acid enzyme substrate. J. Biol. Chem. 273:32901–32909.
  • Yu, Y. T., Breitbart R. E., Smoot L. B., Lee Y., Mahdavi V., and Nadal-Ginard B.. 1992. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 6:1783–1798.
  • Zhao, M., New L., Kravchenko V. V., Kato Y., Gram H., di Padova F., Olson E. N., Ulevitch R. J., and Han J.. 1999. Regulation of the MEF2 family of transcription factors by p38. Mol. Cell. Biol. 19:21–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.