40
Views
118
CrossRef citations to date
0
Altmetric
Gene Expression

Yeast Asc1p and Mammalian RACK1 Are Functionally Orthologous Core 40S Ribosomal Proteins That Repress Gene Expression

, , , &
Pages 8276-8287 | Received 11 Mar 2004, Accepted 17 Jun 2004, Published online: 27 Mar 2023

REFERENCES

  • Alban, A., David S. O., Bjorkesten L., Andersson C., Sloge E., Lewis S., and Currie I.. 2003. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44.
  • Angenstein, F., Evans A. M., Settlage R. E., Moran S. T., Ling S. C., Klintsova A. Y., Shabanowitz J., Hunt D. F., and Greenough W. T.. 2002. A receptor for activated C kinase is part of messenger ribonucleoprotein complexes associated with polyA-mRNAs in neurons. J. Neurosci. 22:8827–8837.
  • Asano, K., Phan L., Krishnamoorthy T., Pavitt G. D., Gomez E., Hannig E. M., Nika J., Donahue T. F., Huang H. K., and Hinnebusch A. G.. 2002. Analysis and reconstitution of translation initiation in vitro. Methods Enzymol. 351:221–247.
  • Ceci, M., Gaviraghi C., Gorrini C., Sala L. A., Offenhauser N., Carlo Marchisio P., and Biffo S.. 2003. Release of eIF6 [p27(BBP)] from the 60S subunit allows 80S ribosome assembly. Nature 426:579–584.
  • Chang, B. Y., Conroy K. B., Machleder E. M., and Cartwright C. A.. 1998. RACK1, a receptor for activated C kinase and a homolog of the β subunit of G proteins, inhibits activity of Src tyrosine kinases and growth of NIH 3T3 cells. Mol. Cell. Biol. 18:3245–3256.
  • Chantrel, Y., Gaisne M., Lions C., and Verdiere J.. 1998. The transcriptional regulator Hap1p (Cyp1p) is essential for anaerobic or heme-deficient growth of Saccharomyces cerevisiae: genetic and molecular characterization of an extragenic suppressor that encodes a WD repeat protein. Genetics 148:559–569.
  • Choi, S. K., Lee J. H., Zoll W. L., Merrick W. C., and Dever T. E.. 1998. Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. Science 280:1757–1760.
  • Christianson, T. W., Sikorski R. S., Dante M., Shero J. H., and Hieter P.. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122.
  • Cox, E. A., Bennin D., Doan A. T., O'Toole T., and Huttenlocher A.. 2003. RACK1 regulates integrin-mediated adhesion, protrusion, and chemotactic cell migration via its Src-binding site. Mol. Biol. Cell 14:658–669.
  • Dell, E. J., Connor J., Chen S., Stebbins E. G., Skiba N. P., Mochly-Rosen D., and Hamm H. E.. 2002. The βγ subunit of heterotrimeric G proteins interacts with RACK1 and two other WD repeat proteins. J. Biol. Chem. 277:49888–49895.
  • Dever, T. E., Feng L., Wek R. C., Cigan A. M., Donahue T. F., and Hinnebusch A. G.. 1992. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68:585–596.
  • Doudna, J. A., and Rath V. L.. 2002. Structure and function of the eukaryotic ribosome: the next frontier. Cell 109:153–156.
  • Friedman, D. B., Hill S., Keller J. W., Merchant N. B., Levy S. E., Coffey R. J., and Caprioli R. M.. 2004. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 4:793–811.
  • Fromont-Racine, M., Senger B., Saveanu C., and Fasiolo F.. 2003. Ribosome assembly in eukaryotes. Gene 313:17–42.
  • Gallina, A., Rossi F., and Milanesi G.. 2001. Rack1 binds HIV-1 Nef and can act as a Nef-protein kinase C adaptor. Virology 283:7–18.
  • Garrels, J. I., McLaughlin C. S., Warner J. R., Futcher B., Latter G. I., Kobayashi R., Schwender B., Volpe T., Anderson D. S., Mesquita-Fuentes R., and Payne W. E.. 1997. Proteome studies of Saccharomyces cerevisiae: identification and characterization of abundant proteins. Electrophoresis 18:1347–1360.
  • Geijsen, N., Spaargaren M., Raaijmakers J. A., Lammers J. W., Koenderman L., and Coffer P. J.. 1999. Association of RACK1 and PKCβ with the common beta-chain of the IL-5/IL-3/GM-CSF receptor. Oncogene 18:5126–5130.
  • Gerbasi, V., Lutsenko S., and Lewis E. J.. 2003. A mutation in the ATP7B copper transporter causes reduced dopamine β-hydroxylase and norepinephrine in mouse adrenal. Neurochem. Res. 28:867–873.
  • Ghaemmaghami, S., Huh W. K., Bower K., Howson R. W., Belle A., Dephoure N., O'Shea E. K., and Weissman J. S.. 2003. Global analysis of protein expression in yeast. Nature 425:737–741.
  • Guillemot, F., Billault A., and Auffray C.. 1989. Physical linkage of a guanine nucleotide-binding protein-related gene to the chicken major histocompatibility complex. Proc. Natl. Acad. Sci. USA 86:4594–4598.
  • Hennig, E. E., Butruk E., and Ostrowski J.. 2001. RACK1 protein interacts with Helicobacter pylori VacA cytotoxin: the yeast two-hybrid approach. Biochem. Biophys. Res. Commun. 289:103–110.
  • Hermanto, U., Zong C. S., Li W., and Wang L. H.. 2002. RACK1, an insulin-like growth factor I (IGF-I) receptor-interacting protein, modulates IGF-I-dependent integrin signaling and promotes cell spreading and contact with extracellular matrix. Mol. Cell. Biol. 22:2345–2365.
  • Hinnebusch, A. G. 1985. A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 5:2349–2360.
  • Hoffmann, B., Mosch H. U., Sattlegger E., Barthelmess I. B., Hinnebusch A., and Braus G. H.. 1999. The WD protein Cpc2p is required for repression of Gcn4 protein activity in yeast in the absence of amino acid starvation. Mol. Microbiol. 31:807–822.
  • Iizuka, N., Najita L., Franzusoff A., and Sarnow P.. 1994. Cap-dependent and Cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol. Cell. Biol. 14:7322–7330.
  • Inada, T., Winstall E., Tarun S. Z., Jr., Yates III J. R., Schieltz D., and Sachs A. B.. 2002. One-step affinity purification of the yeast ribosome and its associated proteins and mRNAs. RNA 8:948–958.
  • Ishikawa, H. 1977. Evolution of ribosomal RNA. Comp. Biochem. Physiol. B. 58:1–7.
  • Jansen, R., Bussemaker H. J., and Gerstein M.. 2003. Revisiting the codon adaptation index from a whole-genome perspective: analyzing the relationship between gene expression and codon occurrence in yeast using a variety of models. Nucleic Acids Res. 31:2242–2251.
  • Kiely, P. A., Sant A., and O'Connor R.. 2002. RACK1 is an insulin-like growth factor 1 (IGF-1) receptor-interacting protein that can regulate IGF-1-mediated Akt activation and protection from cell death. J. Biol. Chem. 277:22581–22589.
  • Koehler, J. A., and Moran M. F.. 2001. RACK1, a protein kinase C scaffolding protein, interacts with the PH domain of p120GAP. Biochem. Biophys. Res. Commun. 283:888–895.
  • Kruiswijk, T., and Planta R. J.. 1974. Analysis of the protein composition of yeast ribosomal subunits by two-dimensional polyacrylamide gel electrophoresis. Mol. Biol. Rep. 1:409–415.
  • Kubota, T., Yokosawa N., Yokota S., and Fujii N.. 2002. Association of mumps virus V protein with RACK1 results in dissociation of STAT-1 from the alpha interferon receptor complex. J. Virol. 76:12676–12682.
  • Liliental, J., and Chang D. D.. 1998. Rack1, a receptor for activated protein kinase C, interacts with integrin beta subunit. J. Biol. Chem. 273:2379–2383.
  • Link, A. J., Eng J., Schieltz D. M., Carmack E., Mize G. J., Morris D. R., Garvik B. M., and Yates III J. R.. 1999. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17:676–682.
  • Mazumder, B., Sampath P., Seshadri V., Maitra R. K., DiCorleto P. E., and Fox P. L.. 2003. Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control. Cell 115:187–198.
  • McCahill, A., Warwicker J., Bolger G. B., Houslay M. D., and Yarwood S. J.. 2002. The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol. Pharmacol. 62:1261–1273.
  • Mikulits, W., Pradet-Balade B., Habermann B., Beug H., Garcia-Sanz J. A., and Mullner E. W.. 2000. Isolation of translationally controlled mRNAs by differential screening. FASEB J. 14:1641–1652.
  • Mourton, T., Hellberg C. B., Burden-Gulley S. M., Hinman J., Rhee A., and Brady-Kalnay S. M.. 2001. The PTPmu protein-tyrosine phosphatase binds and recruits the scaffolding protein RACK1 to cell-cell contacts. J. Biol. Chem. 276:14896–14901.
  • Mumberg, D., Muller R., and Funk M.. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122.
  • Olson, M. V., Dutchik J. E., Graham M. Y., Brodeur G. M., Helms C., Frank M., MacCollin M., Scheinman R., and Frank T.. 1986. Random-clone strategy for genomic restriction mapping in yeast. Proc. Natl. Acad. Sci. USA 83:7826–7830.
  • Ozaki, T., Watanabe K., Nakagawa T., Miyazaki K., Takahashi M., and Nakagawara A.. 2003. Function of p73, not of p53, is inhibited by the physical interaction with RACK1 and its inhibitory effect is counteracted by pRB. Oncogene 22:3231–3242.
  • Reinhardt, J., and Wolff T.. 2000. The influenza A virus M1 protein interacts with the cellular receptor of activated C kinase (RACK) 1 and can be phosphorylated by protein kinase C. Vet. Microbiol. 74:87–100.
  • Rigas, A. C., Ozanne D. M., Neal D. E., and Robson C. N.. 2003. The scaffolding protein RACK1 interacts with androgen receptor and promotes cross-talk through a protein kinase C signaling pathway. J. Biol. Chem. 278:46087–46093.
  • Riles, L., Dutchik J. E., Baktha A., McCauley B. K., Thayer E. C., Leckie M. P., Braden V. V., Depke J. E., and Olson M. V.. 1993. Physical maps of the six smallest chromosomes of Saccharomyces cerevisiae at a resolution of 2.6 kilobase pairs. Genetics 134:81–150.
  • Rodal, A. A., Tetreault J. W., Lappalainen P., Drubin D. G., and Amberg D. C.. 1999. Aip1p interacts with cofilin to disassemble actin filaments. J. Cell Biol. 145:1251–1264.
  • Ron, D., Jiang Z., Yao L., Vagts A., Diamond I., and Gordon A.. 1999. Coordinated movement of RACK1 with activated βIIPKC. J. Biol. Chem. 274:27039–27046.
  • Sanders, S. L., Jennings J., Canutescu A., Link A. J., and Weil P. A.. 2002. Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol. Cell. Biol. 22:4723–4738.
  • Sharp, P. M., and Li W. H.. 1987. The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15:1281–1295.
  • Sherman, F., Fink G. R., and Hicks J. B.. 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, New York, N.Y.
  • Shor, B., Calaycay J., Rushbrook J., and McLeod M.. 2003. Cpc2/RACK1 is a ribosome-associated protein that promotes efficient translation in Schizosaccharomyces pombe. J. Biol. Chem. 278:49119–49128.
  • Spahn, C. M., Beckmann R., Eswar N., Penczek P. A., Sali A., Blobel G., and Frank J.. 2001. Structure of the 80S ribosome from Saccharomyces cerevisiae—tRNA-ribosome and subunit-subunit interactions. Cell 107:373–386.
  • Stebbins, E. G., and Mochly-Rosen D.. 2001. Binding specificity for RACK1 resides in the V5 region of beta II protein kinase C. J. Biol. Chem. 276:29644–29650.
  • Swanson, M. J., Qiu H., Sumibcay L., Krueger A., Kim S. J., Natarajan K., Yoon S., and Hinnebusch A. G.. 2003. A multiplicity of coactivators is required by Gcn4p at individual promoters in vivo. Mol. Cell. Biol. 23:2800–2820.
  • Tarun, S. Z., Jr., and Sachs A. B.. 1995. A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev. 9:2997–3007.
  • Tarun, S. Z., Jr., Wells S. E., Deardorff J. A., and Sachs A. B.. 1997. Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc. Natl. Acad. Sci. USA 94:9046–9051.
  • Tcherkasowa, A. E., Adam-Klages S., Kruse M. L., Wiegmann K., Mathieu S., Kolanus W., Kronke M., and Adam D.. 2002. Interaction with factor associated with neutral sphingomyelinase activation, a WD motif-containing protein, identifies receptor for activated C-kinase 1 as a novel component of the signaling pathways of the p55 TNF receptor. J. Immunol. 169:5161–5170.
  • Tschochner, H., and Hurt E.. 2003. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol. 13:255–263.
  • Velculescu, V. E., Zhang L., Zhou W., Vogelstein J., Basrai M. A., Bassett D. E., Jr., Hieter P., Vogelstein B., and Kinzler K. W.. 1997. Characterization of the yeast transcriptome. Cell 88:243–251.
  • Vilardell, J., and Warner J. R.. 1997. Ribosomal protein L32 of Saccharomyces cerevisiae influences both the splicing of its own transcript and the processing of rRNA. Mol. Cell. Biol. 17:1959–1965.
  • Winzeler, E. A., Shoemaker D. D., Astromoff A., Liang H., Anderson K., Andre B., Bangham R., Benito R., Boeke J. D., Bussey H., Chu A. M., Connelly C., Davis K., Dietrich F., Dow S. W., El Bakkoury M., Foury F., Friend S. H., Gentalen E., Giaever G., Hegemann J. H., Jones T., Laub M., Liao H., Davis R. W., et al. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906.
  • Wodicka, L., Dong H., Mittmann M., Ho M. H., and Lockhart D. J.. 1997. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat. Biotechnol. 15:1359–1367.
  • Yarwood, S. J., Steele M. R., Scotland G., Houslay M. D., and Bolger G. B.. 1999. The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific phosphodiesterase PDE4D5 isoform. J. Biol. Chem. 274:14909–14917.
  • Yik, J. H., Chen R., Nishimura R., Jennings J. L., Link A. J., and Zhou Q.. 2003. Inhibition of P-TEFb (CDK9/cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol. Cell 12:971–982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.