38
Views
56
CrossRef citations to date
0
Altmetric
Cell Growth and Development

TOR Controls Transcriptional and Translational Programs via Sap-Sit4 Protein Phosphatase Signaling Effectors

, , , , &
Pages 8332-8341 | Received 27 Feb 2004, Accepted 30 Jun 2004, Published online: 27 Mar 2023

REFERENCES

  • Ai, W., Bertram P. G., Tsang C. K., Chan T. F., and Zheng X. F.. 2002. Regulation of subtelomeric silencing during stress response. Mol. Cell 10:1295–1305.
  • Ashe, M. P., De Long S. K., and Sachs A. B.. 2000. Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell 11:833–848.
  • Backman, S., Stambolic V., and Mak T.. 2002. PTEN function in mammalian cell size regulation. Curr. Opin. Neurobiol. 12:516–522.
  • Barbet, N. C., Schneider U., Helliwell S. B., Stansfield I., Tuite M. F., and Hall M. N.. 1996. TOR controls translation initiation and early G1 progression in yeast. Mol. Biol. Cell 7:25–42.
  • Beck, T., and Hall M. N.. 1999. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692.
  • Bertram, P. G., Choi J. H., Carvalho J., Ai W., Zeng C., Chan T. F., and Zheng X. F.. 2000. Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J. Biol. Chem. 275:35727–35733.
  • Cardenas, M. E., Cutler N. S., Lorenz M. C., Di Como C. J., and Heitman J.. 1999. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 13:3271–3279.
  • Chen, E. J., and Kaiser C. A.. 2003. LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J. Cell Biol. 161:333–347.
  • Cherkasova, V. A., and Hinnebusch A. G.. 2003. Translational control by TOR and TAP42 through dephosphorylation of eIF2α kinase GCN2. Genes Dev. 17:859–872.
  • Cutler, N. S., Pan X., Heitman J., and Cardenas M. E.. 2001. The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol. Biol. Cell 12:4103–4113.
  • Di Como, C. J., and Arndt K. T.. 1996. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 10:1904–1916.
  • Duvel, K., Santhanam A., Garrett S., Schneper L., and Broach J. R.. 2003. Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast. Mol. Cell 11:1467–1478.
  • Garber, K. 2001. Rapamycin's resurrection: a new way to target the cancer cell cycle. J. Natl. Cancer Inst. 93:1517–1519.
  • Garber, K. 2002. Synthetic lethality: killing cancer with cancer. J. Natl. Cancer Inst. 94:1666–1668.
  • Garcia-Barrio, M., Dong J., Cherkasova V. A., Zhang X., Zhang F., Ufano S., Lai R., Qin J., and Hinnebusch A. G.. 2002. Serine 577 is phosphorylated and negatively affects the tRNA binding and eIF2α kinase activities of GCN2. J. Biol. Chem. 277:30675–30683.
  • Goldstein, A. L., and McCusker J. H.. 1999. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553.
  • Hardwick, J. S., Kuruvilla F. G., Tong J. K., Shamji A. F., and Schreiber S. L.. 1999. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc. Natl. Acad. Sci. USA 96:14866–14870.
  • Hinnebusch, A. 2000. Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes, p. 185–243. In Sonenberg N., Hershey J. W. B., and Mathews M. B. (ed.), Translational control of gene expression. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Hinnebusch, A. G. 1985. A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 5:2349–2360.
  • Hinnebusch, A. G. 1990. Involvement of an initiation factor and protein phosphorylation in translational control of GCN4 mRNA. Trends Biochem. Sci. 15:148–152.
  • Hinnebusch, A. G., and Natarajan K.. 2002. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot. Cell 1:22–32.
  • Ho, Y., Gruhler A., Heilbut A., Bader G. D., Moore L., Adams S. L., Millar A., Taylor P., Bennett K., Boutilier K., Yang L., Wolting C., Donaldson I., Schandorff S., Shewnarane J., Vo M., Taggart J., Goudreault M., Muskat B., Alfarano C., Dewar D., Lin Z., Michalickova K., Willems A. R., Sassi H., Nielsen P. A., Rasmussen K. J., Andersen J. R., Johansen L. E., Hansen L. H., Jespersen H., Podtelejnikov A., Nielsen E., Crawford J., Poulsen V., Sorensen B. D., Matthiesen J., Hendrickson R. C., Gleeson F., Pawson T., Moran M. F., Durocher D., Mann M., Hogue C. W., Figeys D., and Tyers M.. 2002. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183.
  • Jablonowski, D., Butler A. R., Fichtner L., Gardiner D., Schaffrath R., and Stark M. J.. 2001. Sit4p protein phosphatase is required for sensitivity of Saccharomyces cerevisiae to Kluyveromyces lactis zymocin. Genetics 159:1479–1489.
  • Jacinto, E., Guo B., Arndt K. T., Schmelzle T., and Hall M. N.. 2001. TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway. Mol. Cell 8:1017–1026.
  • Jiang, Y., and Broach J. R.. 1999. Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J. 18:2782–2792.
  • Kim, D. H., Sarbassov dos D., Ali S. M., Latek R. R., Guntur K. V., Erdjument-Bromage H., Tempst P., and Sabatini D. M.. 2003. GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 11:895–904.
  • Komeili, A., Wedaman K. P., O'Shea E. K., and Powers T.. 2000. Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J. Cell Biol. 151:863–878.
  • Kubota, H., Obata T., Ota K., Sasaki T., and Ito T.. 2003. Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2α kinase GCN2. J. Biol. Chem. 278:20457–20460.
  • Li, Y., Corradetti M. N., Inoki K., and Guan K. L.. 2004. TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem. Sci. 29:32–38.
  • Loewith, R., Jacinto E., Wullschleger S., Lorberg A., Crespo J. L., Bonenfant D., Oppliger W., Jenoe P., and Hall M. N.. 2002. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10:457–468.
  • Longtine, M. S., McKenzie III A., Demarini D. J., Shah N. G., Wach A., Brachat A., Philippsen P., and Pringle J. R.. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961.
  • Lorenz, M. C., and Heitman J.. 1997. Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog. EMBO J. 16:7008–7018.
  • Luke, M. M., Della Seta F., Di Como C. J., Sugimoto H., Kobayashi R., and Arndt K. T.. 1996. The SAP, a new family of proteins, associate and function positively with the SIT4 phosphatase. Mol. Cell. Biol. 16:2744–2755.
  • Natarajan, K., Meyer M. R., Jackson B. M., Slade D., Roberts C., Hinnebusch A. G., and Marton M. J.. 2001. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol. Cell. Biol. 21:4347–4368.
  • Neshat, M. S., Mellinghoff I. K., Tran C., Stiles B., Thomas G., Petersen R., Frost P., Gibbons J. J., Wu H., and Sawyers C. L.. 2001. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. USA 98:10314–10319.
  • Podsypanina, K., Lee R. T., Politis C., Hennessy I., Crane A., Puc J., Neshat M., Wang H., Yang L., Gibbons J., Frost P., Dreisbach V., Blenis J., Gaciong Z., Fisher P., Sawyers C., Hedrick-Ellenson L., and Parsons R.. 2001. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc. Natl. Acad. Sci. USA 98:10320–10325.
  • Powers, T., and Walter P.. 1999. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol. Biol. Cell 10:987–1000.
  • Rohde, J., Heitman J., and Cardenas M. E.. 2001. The TOR kinases link nutrient sensing to cell growth. J. Biol. Chem. 276:9583–9586.
  • Rohde, J. R., and Cardenas M. E.. 2003. The Tor pathway regulates gene expression by linking nutrient sensing to histone acetylation. Mol. Cell. Biol. 23:629–635.
  • Schiestl, R. H., and Gietz R. D.. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16:339–346.
  • Shamji, A. F., Kuruvilla F. G., and Schreiber S. L.. 2000. Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr. Biol. 10:1574–1581.
  • Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194:3–21.
  • Snyder, G. L., Galdi S., Fienberg A. A., Allen P., Nairn A. C., and Greengard P.. 2003. Regulation of AMPA receptor dephosphorylation by glutamate receptor agonists. Neuropharmacology 45:703–713.
  • Stark, M. J. 1996. Yeast protein serine/threonine phosphatases: multiple roles and diverse regulation. Yeast 12:1647–1675.
  • Sutton, A., Lin F., and Arndt K. T.. 1991. The SIT4 protein phosphatase is required in late G1 for progression into S phase. Cold Spring Harbor Symp. Quant. Biol. 56:75–81.
  • Tavalin, S. J., Colledge M., Hell J. W., Langeberg L. K., Huganir R. L., and Scott J. D.. 2002. Regulation of GluR1 by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression. J. Neurosci. 22:3044–3051.
  • Tee, A. R., Manning B. D., Roux P. P., Cantley L. C., and Blenis J.. 2003. Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13:1259–1268.
  • Valenzuela, L., Aranda C., and Gonzalez A.. 2001. TOR modulates GCN4-dependent expression of genes turned on by nitrogen limitation. J. Bacteriol. 183:2331–2334.
  • Van Slegtenhorst, M., Carr E., Stoyanova R., Kruger W., and Henske E. P.. 2004. tsc1+ and tsc2+ regulate arginine uptake and metabolism in Schizosaccharomyces pombe. J. Biol. Chem. 279:12706–12713.
  • Wang, H., and Jiang Y.. 2003. The Tap42-protein phosphatase type 2A catalytic subunit complex is required for cell cycle-dependent distribution of actin in yeast. Mol. Cell. Biol. 23:3116–3125.
  • Wedaman, K. P., Reinke A., Anderson S., Yates III J., McCaffery J. M., and Powers T.. 2003. Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol. Biol. Cell 14:1204–1220.
  • Wek, R. C., Cannon J. F., Dever T. E., and Hinnebusch A. G.. 1992. Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2 alpha kinase GCN2. Mol. Cell. Biol. 12:5700–5710.
  • Wolfe, K. H., and Shields D. C.. 1997. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713.
  • Yocum, R. R., Hanley S., West R., Jr., and Ptashne M.. 1984. Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1985–1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.