21
Views
36
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Role of Pre-rRNA Base Pairing and 80S Complex Formation in Subnucleolar Localization of the U3 snoRNP

, , , , &
Pages 8600-8610 | Received 08 Mar 2004, Accepted 08 Jul 2004, Published online: 27 Mar 2023

REFERENCES

  • Bachellerie, J. P., Cavaille J., and Huttenhofer A.. 2002. The expanding snoRNA world. Biochimie 84:775–790.
  • Bachler, M., Schroeder R., and von Ahsen U.. 1999. StreptoTag: a novel method for the isolation of RNA-binding proteins. RNA 5:1509–1516.
  • Beltrame, M., and Tollervey D.. 1995. Base pairing between U3 and the pre-ribosomal RNA is required for 18S rRNA synthesis. EMBO J. 14:4350–4356.
  • Beven, A. F., Lee R., Razaz M., Leader D. J., Brown J. W., and Shaw P. J.. 1996. The organization of ribosomal RNA processing correlates with the distribution of nucleolar snRNAs. J. Cell Sci. 109:1241–1251.
  • Billy, E., Wegierski T., Nasr F., and Filipowicz W.. 2000. Rcl1p, the yeast protein similar to the RNA 3′-phosphate cyclase, associates with U3 snoRNP and is required for 18S rRNA biogenesis. EMBO J. 19:2115–2126.
  • Borovjagin, A. V., and Gerbi S. A.. 2000. The spacing between functional Cis-elements of U3 snoRNA is critical for rRNA processing. J. Mol. Biol. 300:57–74.
  • Borovjagin, A. V., and Gerbi S. A.. 2001. Xenopus U3 snoRNA GAC-Box A′ and Box A sequences play distinct functional roles in rRNA processing. Mol. Cell. Biol. 21:6210–6221.
  • Dragon, F., Gallagher J. E., Compagnone-Post P. A., Mitchell B. M., Porwancher K. A., Wehner K. A., Wormsley S., Settlage R. E., Shabanowitz J., Osheim Y., Beyer A. L., Hunt D. F., and Baserga S. J.. 2002. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417:967–970.
  • Gautier, T., Berges T., Tollervey D., and Hurt E.. 1997. Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis. Mol. Cell. Biol. 17:7088–7098.
  • Gerbi, S. A., and Borovjagin A.. 1997. U3 snoRNA may recycle through different compartments of the nucleolus. Chromosoma 105:401–406.
  • Ginisty, H., Amalric F., and Bouvet P.. 1998. Nucleolin functions in the first step of ribosomal RNA processing. EMBO J. 17:1476–1486.
  • Grandi, P., Rybin V., Bassler J., Petfalski E., Strauss D., Marzioch M., Schafer T., Kuster B., Tschochner H., Tollervey D., Gavin A. C., and Hurt E.. 2002. 90S Pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol. Cell 10:105–115.
  • Granneman, S., Gallagher J. E., Vogelzangs J., Horstman W., van Venrooij W. J., Baserga S. J., and Pruijn G. J.. 2003. The human Imp3 and Imp4 proteins form a ternary complex with hMpp10, which only interacts with the U3 snoRNA in 60-80S ribonucleoprotein complexes. Nucleic Acids Res. 31:1877–1887.
  • Granneman, S., Pruijn G. J., Horstman W., Van Venrooij W. J., Lührmann R., and Watkins N. J.. 2002. The hU3-55K protein requires 15.5K binding to the box B/C motif as well as flanking RNA elements for its association with the U3 small nucleolar RNA in vitro. J. Biol. Chem. 277:48490–48500.
  • Hadjiolova, K. V., Nicoloso M., Mazan S., Hadjiolov A. A., and Bachellerie J. P.. 1993. Alternative pre-rRNA processing pathways in human cells and their alteration by cycloheximide inhibition of protein synthesis. Eur. J. Biochem. 212:211–215.
  • Hughes, J. M. 1996. Functional base-pairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit RNA. J. Mol. Biol. 259:645–654.
  • Hughes, J. M., and Ares M., Jr. 1991. Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA. EMBO J. 10:4231–4239.
  • Jarrous, N., Wolenski J. S., Wesolowski D., Lee C., and Altman S.. 1999. Localization in the nucleolus and coiled bodies of protein subunits of the ribonucleoprotein ribonuclease P. J. Cell Biol. 146:559–572.
  • Kass, S., Tyc K., Steitz J. A., and Sollner-Webb B.. 1990. The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell 60:897–908.
  • Kiss, T. 2001. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 20:3617–3622.
  • Lange, T. S., Ezrokhi M., Borovjagin A. V., Rivera-Leon R., North M. T., and Gerbi S. A.. 1998. Nucleolar localization elements of the Xenopus laevis U3 small nucleolar RNA. Mol. Biol. Cell 9:2973–2985.
  • Lazdins, I. B., Delannoy M., and Sollner-Webb B.. 1997. Analysis of nucleolar transcription and processing domains and pre-rRNA movements by in situ hybridization. Chromosoma 105:481–495.
  • Leary, D. J., Terns M. P., and Huang S.. 2004. Components of U3 snoRNA-containing complexes shuttle between nuclei and the cytoplasm and differentially localize in nucleoli: implications for assembly and function. Mol. Biol. Cell 15:281–293.
  • Lee, S. J., and Baserga S. J.. 1999. Imp3p and Imp4p, two specific components of the U3 small nucleolar ribonucleoprotein that are essential for pre-18S rRNA processing. Mol. Cell. Biol. 19:5441–5452.
  • Leung, A. K., and Lamond A. I.. 2002. In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles. J. Cell Biol. 157:615–629.
  • Liang, W. Q., and Fournier M. J.. 1995. U14 base-pairs with 18S rRNA: a novel snoRNA interaction required for rRNA processing. Genes Dev. 9:2433–2443.
  • Lukowiak, A. A., Granneman S., Mattox S. A., Speckmann W. A., Jones K., Pluk H., van Venrooij W. J., Terns R. M., and Terns M. P.. 2000. Interaction of the U3-55k protein with U3 snoRNA is mediated by the box B/C motif of U3 and the WD repeats of U3-55k. Nucleic Acids Res. 28:3462–3471.
  • Matera, A. G., Tycowski K. T., Steitz J. A., and Ward D. C.. 1994. Organization of small nucleolar ribonucleoproteins (snoRNPs) by fluorescence in situ hybridization and immunocytochemistry. Mol. Biol. Cell 5:1289–1299.
  • Méreau, A., Fournier R., Gregoire A., Mougin A., Fabrizio P., Lührmann R., and Branlant C.. 1997. An in vivo and in vitro structure-function analysis of the Saccharomyces cerevisiae U3A snoRNP: protein-RNA contacts and base-pair interaction with the pre-ribosomal RNA. J. Mol. Biol. 273:552–571.
  • Narayanan, A., Speckmann W., Terns R., and Terns M. P.. 1999. Role of the box C/D motif in localization of small nucleolar RNAs to coiled bodies and nucleoli. Mol. Biol. Cell 10:2131–2147.
  • Peculis, B. A., and Steitz J. A.. 1993. Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell 73:1233–1245.
  • Samarsky, D. A., and Fournier M. J.. 1998. Functional mapping of the U3 small nucleolar RNA from the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 18:3431–3444.
  • Savino, R., and Gerbi S. A.. 1990. In vivo disruption of Xenopus U3 snRNA affects ribosomal RNA processing. EMBO J. 9:2299–2308.
  • Schafer, T., Strauss D., Petfalski E., Tollervey D., and Hurt E.. 2003. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J. 22:1370–1380.
  • Sharma, K., Venema J., and Tollervey D.. 1999. The 5′ end of the 18S rRNA can be positioned from within the mature rRNA. RNA 5:678–686.
  • Speckmann, W., Narayanan A., Terns R., and Terns M. P.. 1999. Nuclear retention elements of U3 small nucleolar RNA. Mol. Cell. Biol. 19:8412–8421.
  • Speckmann, W. A., Terns R. M., and Terns M. P.. 2000. The box C/D motif directs snoRNA 5′-cap hypermethylation. Nucleic Acids Res. 28:4467–4473.
  • Taneja, K. L., Lifshitz L. M., Fay F. S., and Singer R. H.. 1992. Poly(A) RNA codistribution with microfilaments: evaluation by in situ hybridization and quantitative digital imaging microscopy. J. Cell Biol. 119:1245–1260.
  • Terns, M. P., and Terns R. M.. 2002. Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr. 10:17–39.
  • Tyc, K., and Steitz J. A.. 1989. U3, U8 and U13 comprise a new class of mammalian snRNPs localized in the cell nucleolus. EMBO J. 8:3113–3119.
  • van Eenennaam, H., van der Heijden A., Janssen R. J., van Venrooij W. J., and Pruijn G. J.. 2001. Basic domains target protein subunits of the RNase MRP complex to the nucleolus independently of complex association. Mol. Biol. Cell 12:3680–3689.
  • Venema, J., Vos H. R., Faber A. W., van Venrooij W. J., and Raué H. A.. 2000. Yeast Rrp9p is an evolutionarily conserved U3 snoRNP protein essential for early pre-rRNA processing cleavages and requires box C for its association. RNA 6:1660–1671.
  • Verheggen, C., Mouaikel J., Thiry M., Blanchard J. M., Tollervey D., Bordonne R., Lafontaine D. L., and Bertrand E.. 2001. Box C/D small nucleolar RNA trafficking involves small nucleolar RNP proteins, nucleolar factors and a novel nuclear domain. EMBO J. 20:5480–5490.
  • Watkins, N. J., Dickmanns A., and Lührmann R.. 2002. Conserved stem II of the box C/D motif is essential for nucleolar localization and is required, along with the 15.5K protein, for the hierarchical assembly of the box C/D snoRNP. Mol. Cell. Biol. 22:8342–8352.
  • Watkins, N. J., Segault V., Charpentier B., Nottrott S., Fabrizio P., Bachi A., Wilm M., Rosbash M., Branlant C., and Lührmann R.. 2000. A common core RNP structure shared between the small nucleolar box C/D RNPs and the spliceosomal U4 snRNP. Cell 103:457–466.
  • Wehner, K. A., Gallagher J. E., and Baserga S. J.. 2002. Components of an interdependent unit within the SSU processome regulate and mediate its activity. Mol. Cell. Biol. 22:7258–7267.
  • Westendorf, J. M., Konstantinov K. N., Wormsley S., Shu M. D., Matsumoto-Taniura N., Pirollet F., Klier F. G., Gerace L., and Baserga S. J.. 1998. M phase phosphoprotein 10 is a human U3 small nucleolar ribonucleoprotein component. Mol. Biol. Cell 9:437–449.
  • Wormsley, S., Samarsky D. A., Fournier M. J., and Baserga S. J.. 2001. An unexpected, conserved element of the U3 snoRNA is required for Mpp10p association. RNA 7:904–919.
  • Yuan, Y., and Reddy R.. 1989. Genes for human U3 small nucleolar RNA contain highly conserved flanking sequences. Biochim. Biophys. Acta 1008:14–22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.